2023

 

Forschungsartikel in Sammelband (Konferenz)

Klapproth, J., Unger, S., Pohl, J., Boberg, S., Grimme, C., & Quandt, T. (2023). Immunize the Public against Disinformation Campaigns: Developing a Framework for Analyzing the Macrosocial Effects of Prebunking Interventions. In Bui, T. X. (Ed.), Proceedings of the 56th Hawaii International Conference on System Sciences (HICSS) (pp. 2411–2420). Honolulu, HI, USA: ScholarSpace.
Mehr Details BibTeX Gesamter Text

Pohl, J. S., Markmann, S., Assenmacher, D., & Grimme, C. (2023). Invasion@Ukraine: Providing and describing a Twitter streaming dataset that captures the outbreak of war between Russia and Ukraine in 2022. In Lin, Y.-R., Cha, M., & Quercia, D. (Eds.), Proceedings of the Seventeenth International AAAI Conference on Web and Social Media (pp. 1093–1101). Palo Alto, CA, USA: AAAI Press.
Mehr Details BibTeX Gesamter Text

Prager, R., & Trautmann, H. (2023). Nullifying the Inherent Bias of Non-invariant Exploratory Landscape Analysis Features. In Correia, J., Smith, S., & Qaddoura, R. (Eds.), Applications of Evolutionary Computation (pp. 411–425). Cham: Springer Nature Switzerland.
Mehr Details BibTeX DOI

Schäpermeier, L., Kerschke, P., Grimme, C., & Trautmann, H. (2023). Peak-A-Boo! Generating Multi-Objective Multiple Peaks Benchmark Problems with Precise Pareto Sets. In Li, K., & Wang, H. (Eds.), Proceedings of the International Conference Series on Evolutionary Multi-Criterion Optimization (pp. 291–304). Lecture Notes in Computer Science: Vol. 13970. Cham: Springer.
Mehr Details BibTeX DOI

Stampe, L., Pohl, J., & Grimme, C. (2023). Towards Multimodal Campaign Detection: Including Image Information in Stream Clustering to Detect Social Media Campaigns. In Ceolin, D., Caselli, T., & Tulin, M. (Eds.), Disinformation in Open Online Media (pp. 144–159). Lecture Notes in Computer Science: Vol. 14397. Amsterdam: Springer.
Mehr Details BibTeX DOI

 

Forschungsartikel (Zeitschrift)

Frischlich, L., Clever, L., Wulf, T., Wildschut, T., & Sedikides, C. (2023). Populists’ Use of Nostalgia: A Supervised Machine Learning Approach. International Journal of Communication (Int J Commun), 17(March), 2113–2137.
Mehr Details BibTeX Gesamter Text

Prager, R. P., & Trautmann, H. (2023). Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python. Evolutionary Computation. (accepted / in press (not yet published))
Mehr Details BibTeX

2022

 

Forschungsartikel (Buchbeitrag)

Clever, L., Klapproth, J., & Frischlich, L. (2022). Automatisierte (Gegen-)Rede? Social Bots als digitales Sprachrohr ihrer Nutzer*innen. In Ernst, J., Trompeta, M., & Roth, H.-J. (Eds.), Gegenrede digital (pp. 11–26).
Mehr Details BibTeX

Niemann, M., Assenmacher, D., Brunk, J., Riehle, D. M., Becker, J., & Trautmann, H. (2022). (Semi-)Automatische Kommentarmoderation zur Erhaltung Konstruktiver Diskurse. In Weitzel, G., & Mündges, S. (Eds.), Hate Speech — Definitionen, Ausprägungen, Lösungen (pp. 249–274). Wiesbaden: VS Verlag für Sozialwissenschaften.
Mehr Details BibTeX Gesamter Text DOI

 

Forschungsartikel in Sammelband (Konferenz)

Assenmacher, D., & Trautmann, H. (2022). Textual One-Pass Stream Clustering with Automated Distance Threshold Adaption. In Tran, T. e. a. (Ed.), Intelligent Information and Database Systems (pp. 3–16). Cham: Springer International Publishing.
Mehr Details BibTeX DOI

Grimme, C., Pohl, J., Cresci, S., Lüling, R., & Preuss, M. (2022). New Automation for Social Bots: From Trivial Behavior to AI-Powered Communication. In Spezzano, F., Amaral, A., Ceolin, D., Fazio, L., & Serra, E. (Eds.), Proceedings of the 4th Multidisciplinary International Symposium on Disinformation in Open Online Media (MISDOOM) (1st ed., pp. 79–99). Lecture Notes in Computer Science: Vol. 4. Cham, Switzerland: Springer Nature.
Mehr Details BibTeX Gesamter Text DOI

Heins, J., Rook, J., Schäpermeier, L., Kerschke, P., Bossek, J., & Trautmann, H. (2022). BBE: Basin-Based Evaluation of Multimodal Multi-objective Optimization Problems. In Rudolph, G., Kononova, A., Aguirre, H., Kerschke, P., Ochoa, G., & Tu{š}ar, T. (Eds.), Parallel Problem Solving from Nature — PPSN XVII (pp. 192–206). Cham: Springer International Publishing.
Mehr Details BibTeX

Pohl, J. S., Assenmacher, D., Seiler, M. V., Trautmann, H., & Grimme, C. (2022). Artificial Social Media Campaign Creation for Benchmarking and Challenging Detection Approaches. In Association, f. t. A. o. A. I. (. (Ed.), Workshop Proceedings of the 16th International Conference on Web and Social Media (ICWSM) (pp. 1–10). Palo Alto, CA, USA: AAAI Press.
Mehr Details BibTeX Gesamter Text DOI

Prager, R. P., Seiler, M. V., Trautmann, H., & Kerschke, P. (2022). Automated Algorithm Selection in Single-Objective Continuous Optimization: A Comparative Study of Deep Learning and Landscape Analysis Methods. In Rudolph, G., Kononova, A. V., Aguirre, H., Kerschke, P., Ochoa, G., & Tušar, T. (Eds.), Parallel Problem Solving from Nature — PPSN XVII (pp. 3–17). Cham: Springer International Publishing.
Mehr Details BibTeX Gesamter Text DOI

Rook, J., Trautmann, H., Bossek, J., & Grimme, C. (2022). On the Potential of Automated Algorithm Configuration on Multi-Modal Multi-Objective Optimization Problems. In Fieldsend, J., & Wagner, M. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 356–359-356–359). GECCO '22. New York, NY, USA: Association for Computing Machinery.
Mehr Details BibTeX Gesamter Text DOI

Schäpermeier, L., Grimme, C., & Kerschke, P. (2022). MOLE: Digging Tunnels Through Multimodal Multi-Objective Landscapes. In Fieldsend, J. E. (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference (pp. 592–600). New York, NY, USA: Association for Computing Machinery, Inc.
Mehr Details BibTeX Gesamter Text DOI

Schneider, L., Schäpermeier, L., Prager, R. P., Bischl, B., Trautmann, H., & Kerschke, P. (2022). HPO x ELA: Investigating Hyperparameter Optimization Landscapes by Means of Exploratory Landscape Analysis. In Rudolph, G., Kononova, A. V., Aguirre, H., Kerschke, P., Ochoa, G., & Tušar, T. (Eds.), Parallel Problem Solving from Nature — PPSN XVII (pp. 575–589). Cham: Springer International Publishing.
Mehr Details BibTeX DOI

Seiler, M. V., Prager, R. P., Kerschke, P., & Trautmann, H. (2022). A Collection of Deep Learning-based Feature-Free Approaches for Characterizing Single-Objective Continuous Fitness Landscapes. In -, (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference (pp. 657–665). New York, NY, USA: ACM Press.
Mehr Details BibTeX DOI

 

Forschungsartikel (Zeitschrift)

Aspar, P., Steinhoff, V., Schäpermeier, L., Kerschke, P., Trautmann, H., & Grimme, C. (2022). The objective that freed me: a multi-objective local search approach for continuous single-objective optimization. Natural Computing, 22(2), 271–285.
Mehr Details BibTeX Gesamter Text DOI

Clever, L., Pohl, J. S., Bossek, J., Kerschke, P., & Trautmann, H. (2022). Process-Oriented Stream Classification Pipeline: A Literature Review. Applied Sciences, 12(8), 1–44.
Mehr Details BibTeX Gesamter Text DOI

Frischlich, L., Kuhfeldt, L., Schatto-Eckrodt, T., & Clever, L. (2022). Alternative counter-news use and fake news recall during the covid-19 crisis. Digital Journalism, 00(00), 1–23.
Mehr Details BibTeX Gesamter Text DOI

Heins, J., Bossek, J., Pohl, J. S., Seiler, M. V., Trautmann, H., & Kerschke, P. (2022). A Study on the Effects of Normalized TSP Features for Automated Algorithm Selection. Theoretical Computer Science (Theoret. Comput. Sci.), 940.
Mehr Details BibTeX DOI

Schäpermeier, L., Grimme, C., & Kerschke, P. (2022). Plotting Impossible? Surveying Visualization Methods for Continuous Multi-Objective Benchmark Problems. IEEE Transactions on Evolutionary Computation, 26(6), 1306–1320.
Mehr Details BibTeX DOI

 

Abstract in Sammelband (Konferenz)

Leszkiewicz, A., Bucur, D., Grimme, C., Michalski, R., Clever, L., Pohl, J. S., Rook, J., Bossek, J., Preuss, M., Squillero, G., Quer, S., Calabrese, A., Iacca, G., Kizgin, H., & Trautmann, H. (2022). Social Influence Analysis (SIA) in Online Social Networks.
Mehr Details

 

Forschungsartikel in Online-Sammlung

Pohl, J. S., Seiler, M. V., Assenmacher, D., & Grimme, C. (2022). A Twitter Streaming Dataset collected before and after the Onset of the War between Russia and Ukraine in 2022.
Mehr Details Gesamter Text DOI

2021

 

Forschungsartikel in Sammelband (Konferenz)

Aspar, P., Kerschke, P., Steinhoff, V., Trautmann, H., & Grimme, C. (2021). Multi^3: Optimizing Multimodal Single-Objective Continuous Problems in the Multi-Objective Space by Means of Multiobjectivization. In Ishibuchi, H. e. a. (Ed.), Evolutionary Multi-Criterion Optimization: 11th International Conference, EMO 2021, Shenzhen, China, March 28–31, 2021, Proceedings (pp. 311–322). Heidelberg, Berlin: Springer.
Mehr Details BibTeX Gesamter Text DOI

Assenmacher, D., Niemann, M., Müller, K., Seiler, M. V., Riehle, D. M., & Trautmann, H. (2021). RP-Mod & RP-Crowd: Moderator- and Crowd-Annotated German News Comment Datasets. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1 (NeurIPS Datasets and Benchmarks 2021), Virtual Event, 1–14.
Mehr Details BibTeX Gesamter Text

Bossek, J., Neumann, A., & Neumann, F. (2021). Breeding Diverse Packings for the Knapsack Problem by Means of Diversity-Tailored Evolutionary Algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '21), Lille, France. (accepted / in press (not yet published))
Mehr Details BibTeX

Bossek, J., Neumann, A., & Neumann, F. (2021). Exact Counting and Sampling of Optima for the Knapsack Problem. In Proceedings of the Learning and Intelligent Optimization, Athens, Greece. (accepted / in press (not yet published))
Mehr Details BibTeX

Bossek, J., & Neumann, F. (2021). Evolutionary Diversity Optimization and the Minimum Spanning Tree Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '21), Lille, France. (accepted / in press (not yet published))
Mehr Details BibTeX

Bossek, J., & Sudholt, D. (2021). Do Additional Optima Speed Up Evolutionary Algorithms?. In Proceedings of the 16th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA XVI), Dornbirn, Austria. (accepted / in press (not yet published))
Mehr Details BibTeX

Bossek, J., & Wagner, M. (2021). Generating Instances with Performance Differences for More Than Just Two Algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '21), Lille, France. (accepted / in press (not yet published))
Mehr Details BibTeX

Clever, L., Schatto-Eckrodt, T., Clever, N., & Frischlich, L. (2021). Extremism on the Second Glance: Automated Content Analysis of Covert Propaganda on Instagram. In Proceedings of the The 3rd Multidisciplinary International Symposium on Disinformation in Open Online Media, Oxford, United Kingdom.
Mehr Details BibTeX

Heins, J., Bossek, J., Pohl, J., Seiler, M., Trautmann, H., & Kerschke, P. (2021). On the Potential of Normalized TSP Features for Automated Algorithm Selection. In Association, f. C. M. (Ed.), Proceedings of the 16th ACM/SIGEVO Conference on Foundations of genetic Algorithms (FOGA XVI) (pp. 1–15). Dornbirn, Austria: ACM Press.
Mehr Details BibTeX Gesamter Text DOI

Markmann, S., & Grimme, C. (2021). Is YouTube Still a Radicalizer? An Exploratory Study on Autoplay and Recommendation. In Proceedings of the Multidisciplinary International Symposium on Disinformation in Open Online Media (MISDOOM), Oxford, UK, 50–65.
Mehr Details BibTeX Gesamter Text DOI

Neumann, A., Bossek, J., & Neumann, F. (2021). Diversifying Greedy Sampling and Evolutionary Diversity Optimisation for Constrained Monotone Submodular Functions. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '21), Lille, France. (accepted / in press (not yet published))
Mehr Details BibTeX

Niemann, M., Müller, K., Kelm, C., Assenmacher, D., & Becker, J. (2021). The German Comment Landscape: A Structured Overview of the Opportunities for Participatory Discourse on News Websites. In Proceedings of the 3rd Multidisciplinary International Symposium on Disinformation in Open Online Media, Oxford, United Kingdom.
Mehr Details BibTeX

Nikfarjam, A., Bossek, J., Neumann, A., & Neumann, F. (2021). Entropy-Based Evolutionary Diversity Optimisation for the Traveling Salesperson Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '21), Lille, France. (accepted / in press (not yet published))
Mehr Details BibTeX

Nikfarjam, A., Bossek, J., Neumann, A., & Neumann, F. (2021). Computing Diverse Sets of High Quality TSP Tours by EAX-Based Evolutionary Diversity Optimisation. In Proceedings of the 16th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA XVI), Dornbirn, Austria. (accepted / in press (not yet published))
Mehr Details BibTeX

Prager, R. P., Moritz, V. H., & Pascal, (2021). Towards Feature-Free Automated Algorithm Selection for Single-Objective Continuous Black-Box Optimization. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Orlando, Florida, USA.
Mehr Details BibTeX

Schäpermeier, L., Grimme, C., & Kerschke, P. (2021). To Boldly Show What No One Has Seen Before: A Dashboard for Visualizing Multi-objective Landscapes. In Proceedings of the 11th International Conference on Evolutionary Multi-Criterion Optimization (EMO), Shenzhen, China, 632–644.
Mehr Details BibTeX Gesamter Text DOI

 

Abstract in Online-Sammlung (Konferenz)

Clever, L., Schatto-Eckrodt, T., Clever, N., & Frischlich, L. (2021). Extremist Propaganda on Instagram. Poster session presented at the 7th International Conference on Computational Social Science, Zürich, Schweiz.
Mehr Details BibTeX

 

Forschungsartikel (Zeitschrift)

Assenmacher, D., Weber, D., Preuss, M., Calero, V. A., Bradshaw, A., Ross, B., Cresci, S., Trautmann, H., Neumann, F., & Grimme, C. (2021). Benchmarking Crisis in Social Media Analytics: A Solution for the Data-Sharing Problem. Social Science Computer Review, online first.
Mehr Details BibTeX DOI

Bossek, J., Peng, P., Neumann, F., & Sudholt, D. (2021). Time Complexity Analysis of Randomized Search Heuristics for the Dynamic Graph Coloring Problem. Algorithmica, 2021. (accepted / in press (not yet published))
Mehr Details BibTeX

Coombs, C., Stacey, P., Kawalek, P., Simeonova, B., Becker, J., Bergener, K., Carvalho, J. Á., Fantinato, M., Garmann-Johnsen, N. F., Grimme, C., Stein, A., & Trautmann, H. (2021). What Is It About Humanity That We Can’t Give Away To Intelligent Machines? A European Perspective. International Journal of Information Management, 58.
Mehr Details BibTeX Gesamter Text DOI

Grimme, C., Kerschke, P., Aspar, P., Trautmann, H., Preuss, M., Deutz, A., Wang, H., & Emmerich, M. (2021). Peeking beyond peaks: Challenges and research potentials of continuous multimodal multi-objective optimization. Computers & Operations Research, 136, 105489.
Mehr Details BibTeX Gesamter Text DOI

Rodrigues, A., Kerschke, P., de B., P. C. A., Trautmann, H., Wagner, C., Hellingrath, B., & Polpo, A. (2021). Estimation of component reliability from superposed renewal processes by means of latent variables. Computational Statistics, 2021.
Mehr Details BibTeX DOI

Terveer, I., & Diepenbrock, F.-R. (2021). Warum ein Teil der Schwimmbad-Aufgabe im NRW-Abitur 2019 so nicht hätte gestellt werden dürfen. Stochastik in der Schule (SiS), 41(3).
Mehr Details BibTeX