Book (monograph)
Terveer, I. (2023). Mathematik für Wirtschaftswissenschaften (5th ed.). Konstanz, München: UVK Lucius.
More details BibTeX DOI
Terveer, I. (2023). Mathematik für Wirtschaftswissenschaften (5th ed.). Konstanz, München: UVK Lucius.
More details BibTeX DOI
Klapproth, J., Unger, S., Pohl, J., Boberg, S., Grimme, C., & Quandt, T. (2023). Immunize the Public against Disinformation Campaigns: Developing a Framework for Analyzing the Macrosocial Effects of Prebunking Interventions. In Bui, T. X. (Ed.), Proceedings of the 56th Hawaii International Conference on System Sciences (HICSS) (pp. 2411–2420). Honolulu, HI, USA: ScholarSpace.
More details BibTeX Full text
Pohl, J. S., Markmann, S., Assenmacher, D., & Grimme, C. (2023). Invasion@Ukraine: Providing and describing a Twitter streaming dataset that captures the outbreak of war between Russia and Ukraine in 2022. In Lin, Y.-R., Cha, M., & Quercia, D. (Eds.), Proceedings of the Seventeenth International AAAI Conference on Web and Social Media (pp. 1093–1101). Palo Alto, CA, USA: AAAI Press.
More details BibTeX Full text
Prager, R., & Trautmann, H. (2023). Nullifying the Inherent Bias of Non-invariant Exploratory Landscape Analysis Features. In Correia, J., Smith, S., & Qaddoura, R. (Eds.), Applications of Evolutionary Computation (pp. 411–425). Cham: Springer Nature Switzerland.
More details BibTeX DOI
Schäpermeier, L., Kerschke, P., Grimme, C., & Trautmann, H. (2023). Peak-A-Boo! Generating Multi-Objective Multiple Peaks Benchmark Problems with Precise Pareto Sets. In Li, K., & Wang, H. (Eds.), Proceedings of the International Conference Series on Evolutionary Multi-Criterion Optimization (pp. 291–304). Lecture Notes in Computer Science: Vol. 13970. Cham: Springer.
More details BibTeX DOI
Stampe, L., Pohl, J., & Grimme, C. (2023). Towards Multimodal Campaign Detection: Including Image Information in Stream Clustering to Detect Social Media Campaigns. In Ceolin, D., Caselli, T., & Tulin, M. (Eds.), Disinformation in Open Online Media (pp. 144–159). Lecture Notes in Computer Science: Vol. 14397. Amsterdam: Springer.
More details BibTeX DOI
Frischlich, L., Clever, L., Wulf, T., Wildschut, T., & Sedikides, C. (2023). Populists’ Use of Nostalgia: A Supervised Machine Learning Approach. International Journal of Communication (Int J Commun), 17(March), 2113–2137.
More details BibTeX Full text
Prager, R. P., & Trautmann, H. (2023). Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python. Evolutionary Computation. (accepted / in press (not yet published))
More details BibTeX
Clever, L., Klapproth, J., & Frischlich, L. (2022). Automatisierte (Gegen-)Rede? Social Bots als digitales Sprachrohr ihrer Nutzer*innen. In Ernst, J., Trompeta, M., & Roth, H.-J. (Eds.), Gegenrede digital (pp. 11–26).
More details BibTeX
Niemann, M., Assenmacher, D., Brunk, J., Riehle, D. M., Becker, J., & Trautmann, H. (2022). (Semi-)Automatische Kommentarmoderation zur Erhaltung Konstruktiver Diskurse. In Weitzel, G., & Mündges, S. (Eds.), Hate Speech — Definitionen, Ausprägungen, Lösungen (pp. 249–274). Wiesbaden: VS Verlag für Sozialwissenschaften.
More details BibTeX Full text DOI
Assenmacher, D., & Trautmann, H. (2022). Textual One-Pass Stream Clustering with Automated Distance Threshold Adaption. In Tran, T. e. a. (Ed.), Intelligent Information and Database Systems (pp. 3–16). Cham: Springer International Publishing.
More details BibTeX DOI
Grimme, C., Pohl, J., Cresci, S., Lüling, R., & Preuss, M. (2022). New Automation for Social Bots: From Trivial Behavior to AI-Powered Communication. In Spezzano, F., Amaral, A., Ceolin, D., Fazio, L., & Serra, E. (Eds.), Proceedings of the 4th Multidisciplinary International Symposium on Disinformation in Open Online Media (MISDOOM) (1st ed., pp. 79–99). Lecture Notes in Computer Science: Vol. 4. Cham, Switzerland: Springer Nature.
More details BibTeX Full text DOI
Heins, J., Rook, J., Schäpermeier, L., Kerschke, P., Bossek, J., & Trautmann, H. (2022). BBE: Basin-Based Evaluation of Multimodal Multi-objective Optimization Problems. In Rudolph, G., Kononova, A., Aguirre, H., Kerschke, P., Ochoa, G., & Tu{š}ar, T. (Eds.), Parallel Problem Solving from Nature — PPSN XVII (pp. 192–206). Cham: Springer International Publishing.
More details BibTeX
Pohl, J. S., Assenmacher, D., Seiler, M. V., Trautmann, H., & Grimme, C. (2022). Artificial Social Media Campaign Creation for Benchmarking and Challenging Detection Approaches. In Association, f. t. A. o. A. I. (. (Ed.), Workshop Proceedings of the 16th International Conference on Web and Social Media (ICWSM) (pp. 1–10). Palo Alto, CA, USA: AAAI Press.
More details BibTeX Full text DOI
Prager, R. P., Seiler, M. V., Trautmann, H., & Kerschke, P. (2022). Automated Algorithm Selection in Single-Objective Continuous Optimization: A Comparative Study of Deep Learning and Landscape Analysis Methods. In Rudolph, G., Kononova, A. V., Aguirre, H., Kerschke, P., Ochoa, G., & Tušar, T. (Eds.), Parallel Problem Solving from Nature — PPSN XVII (pp. 3–17). Cham: Springer International Publishing.
More details BibTeX Full text DOI
Rook, J., Trautmann, H., Bossek, J., & Grimme, C. (2022). On the Potential of Automated Algorithm Configuration on Multi-Modal Multi-Objective Optimization Problems. In Fieldsend, J., & Wagner, M. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 356–359-356–359). GECCO '22. New York, NY, USA: Association for Computing Machinery.
More details BibTeX Full text DOI
Schäpermeier, L., Grimme, C., & Kerschke, P. (2022). MOLE: Digging Tunnels Through Multimodal Multi-Objective Landscapes. In Fieldsend, J. E. (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference (pp. 592–600). New York, NY, USA: Association for Computing Machinery, Inc.
More details BibTeX Full text DOI
Schneider, L., Schäpermeier, L., Prager, R. P., Bischl, B., Trautmann, H., & Kerschke, P. (2022). HPO x ELA: Investigating Hyperparameter Optimization Landscapes by Means of Exploratory Landscape Analysis. In Rudolph, G., Kononova, A. V., Aguirre, H., Kerschke, P., Ochoa, G., & Tušar, T. (Eds.), Parallel Problem Solving from Nature — PPSN XVII (pp. 575–589). Cham: Springer International Publishing.
More details BibTeX DOI
Seiler, M. V., Prager, R. P., Kerschke, P., & Trautmann, H. (2022). A Collection of Deep Learning-based Feature-Free Approaches for Characterizing Single-Objective Continuous Fitness Landscapes. In -, (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference (pp. 657–665). New York, NY, USA: ACM Press.
More details BibTeX DOI
Aspar, P., Steinhoff, V., Schäpermeier, L., Kerschke, P., Trautmann, H., & Grimme, C. (2022). The objective that freed me: a multi-objective local search approach for continuous single-objective optimization. Natural Computing, 22(2), 271–285.
More details BibTeX Full text DOI
Clever, L., Pohl, J. S., Bossek, J., Kerschke, P., & Trautmann, H. (2022). Process-Oriented Stream Classification Pipeline: A Literature Review. Applied Sciences, 12(8), 1–44.
More details BibTeX Full text DOI
Frischlich, L., Kuhfeldt, L., Schatto-Eckrodt, T., & Clever, L. (2022). Alternative counter-news use and fake news recall during the covid-19 crisis. Digital Journalism, 00(00), 1–23.
More details BibTeX Full text DOI
Heins, J., Bossek, J., Pohl, J. S., Seiler, M. V., Trautmann, H., & Kerschke, P. (2022). A Study on the Effects of Normalized TSP Features for Automated Algorithm Selection. Theoretical Computer Science (Theoret. Comput. Sci.), 940.
More details BibTeX DOI
Schäpermeier, L., Grimme, C., & Kerschke, P. (2022). Plotting Impossible? Surveying Visualization Methods for Continuous Multi-Objective Benchmark Problems. IEEE Transactions on Evolutionary Computation, 26(6), 1306–1320.
More details BibTeX DOI
Leszkiewicz, A., Bucur, D., Grimme, C., Michalski, R., Clever, L., Pohl, J. S., Rook, J., Bossek, J., Preuss, M., Squillero, G., Quer, S., Calabrese, A., Iacca, G., Kizgin, H., & Trautmann, H. (2022). Social Influence Analysis (SIA) in Online Social Networks.
More details
Pohl, J. S., Seiler, M. V., Assenmacher, D., & Grimme, C. (2022). A Twitter Streaming Dataset collected before and after the Onset of the War between Russia and Ukraine in 2022.
More details Full text DOI
Aspar, P., Kerschke, P., Steinhoff, V., Trautmann, H., & Grimme, C. (2021). Multi^3: Optimizing Multimodal Single-Objective Continuous Problems in the Multi-Objective Space by Means of Multiobjectivization. In Ishibuchi, H. e. a. (Ed.), Evolutionary Multi-Criterion Optimization: 11th International Conference, EMO 2021, Shenzhen, China, March 28–31, 2021, Proceedings (pp. 311–322). Heidelberg, Berlin: Springer.
More details BibTeX Full text DOI
Assenmacher, D., Niemann, M., Müller, K., Seiler, M. V., Riehle, D. M., & Trautmann, H. (2021). RP-Mod & RP-Crowd: Moderator- and Crowd-Annotated German News Comment Datasets. In Vanschoren, J., & Yeung, S. (Eds.), Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1 (NeurIPS Datasets and Benchmarks 2021) (pp. 1–14). online: Selbstverlag — Eigenverlag.
More details BibTeX Full text
Bossek, J., Neumann, A., & Neumann, F. (2021). Breeding Diverse Packings for the Knapsack Problem by Means of Diversity-Tailored Evolutionary Algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '21), Lille, France. (accepted / in press (not yet published))
More details BibTeX
Bossek, J., Neumann, A., & Neumann, F. (2021). Exact Counting and Sampling of Optima for the Knapsack Problem. In Proceedings of the Learning and Intelligent Optimization, Athens, Greece. (accepted / in press (not yet published))
More details BibTeX
Bossek, J., & Neumann, F. (2021). Evolutionary Diversity Optimization and the Minimum Spanning Tree Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '21), Lille, France. (accepted / in press (not yet published))
More details BibTeX
Bossek, J., & Sudholt, D. (2021). Do Additional Optima Speed Up Evolutionary Algorithms?. In Proceedings of the 16th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA XVI), Dornbirn, Austria. (accepted / in press (not yet published))
More details BibTeX
Bossek, J., & Wagner, M. (2021). Generating Instances with Performance Differences for More Than Just Two Algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '21), Lille, France. (accepted / in press (not yet published))
More details BibTeX
Clever, L., Schatto-Eckrodt, T., Clever, N., & Frischlich, L. (2021). Extremism on the Second Glance: Automated Content Analysis of Covert Propaganda on Instagram. In Proceedings of the The 3rd Multidisciplinary International Symposium on Disinformation in Open Online Media, Oxford, United Kingdom.
More details BibTeX
Heins, J., Bossek, J., Pohl, J., Seiler, M., Trautmann, H., & Kerschke, P. (2021). On the Potential of Normalized TSP Features for Automated Algorithm Selection. In Association, f. C. M. (Ed.), Proceedings of the 16th ACM/SIGEVO Conference on Foundations of genetic Algorithms (FOGA XVI) (pp. 1–15). Dornbirn, Austria: ACM Press.
More details BibTeX Full text DOI
Markmann, S., & Grimme, C. (2021). Is YouTube Still a Radicalizer? An Exploratory Study on Autoplay and Recommendation. In Proceedings of the Multidisciplinary International Symposium on Disinformation in Open Online Media (MISDOOM), Oxford, UK, 50–65.
More details BibTeX Full text DOI
Neumann, A., Bossek, J., & Neumann, F. (2021). Diversifying Greedy Sampling and Evolutionary Diversity Optimisation for Constrained Monotone Submodular Functions. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '21), Lille, France. (accepted / in press (not yet published))
More details BibTeX
Niemann, M., Müller, K., Kelm, C., Assenmacher, D., & Becker, J. (2021). The German Comment Landscape: A Structured Overview of the Opportunities for Participatory Discourse on News Websites. In Disinformation, i. O. O. M. T. M. I. S., MISDOOM, 2., Virtual, E., September, 2., 2021, , & Proceedings, (Eds.), Bright, Jonathan; Giachanou, Anastasia; Spaiser, Viktoria; Spezzano, Francesca; George, Anna; Pavliuc, Alexandra (pp. 112–127). Lecture Notes in Computer Science: Vol. 12887. Cham: Springer.
More details BibTeX DOI
Nikfarjam, A., Bossek, J., Neumann, A., & Neumann, F. (2021). Entropy-Based Evolutionary Diversity Optimisation for the Traveling Salesperson Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '21), Lille, France. (accepted / in press (not yet published))
More details BibTeX
Nikfarjam, A., Bossek, J., Neumann, A., & Neumann, F. (2021). Computing Diverse Sets of High Quality TSP Tours by EAX-Based Evolutionary Diversity Optimisation. In Proceedings of the 16th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA XVI), Dornbirn, Austria. (accepted / in press (not yet published))
More details BibTeX
Prager, R. P., Moritz, V. H., & Pascal, (2021). Towards Feature-Free Automated Algorithm Selection for Single-Objective Continuous Black-Box Optimization. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Orlando, Florida, USA.
More details BibTeX
Schäpermeier, L., Grimme, C., & Kerschke, P. (2021). To Boldly Show What No One Has Seen Before: A Dashboard for Visualizing Multi-objective Landscapes. In Proceedings of the 11th International Conference on Evolutionary Multi-Criterion Optimization (EMO), Shenzhen, China, 632–644.
More details BibTeX Full text DOI
Clever, L., Schatto-Eckrodt, T., Clever, N., & Frischlich, L. (2021). Extremist Propaganda on Instagram. Poster session presented at the 7th International Conference on Computational Social Science, Zürich, Schweiz.
More details BibTeX
Assenmacher, D., Weber, D., Preuss, M., Calero, V. A., Bradshaw, A., Ross, B., Cresci, S., Trautmann, H., Neumann, F., & Grimme, C. (2021). Benchmarking Crisis in Social Media Analytics: A Solution for the Data-Sharing Problem. Social Science Computer Review, online first.
More details BibTeX DOI
Bossek, J., Peng, P., Neumann, F., & Sudholt, D. (2021). Time Complexity Analysis of Randomized Search Heuristics for the Dynamic Graph Coloring Problem. Algorithmica, 2021. (accepted / in press (not yet published))
More details BibTeX
Coombs, C., Stacey, P., Kawalek, P., Simeonova, B., Becker, J., Bergener, K., Carvalho, J. Á., Fantinato, M., Garmann-Johnsen, N. F., Grimme, C., Stein, A., & Trautmann, H. (2021). What Is It About Humanity That We Can’t Give Away To Intelligent Machines? A
European Perspective. International Journal of Information Management, 58.
More details BibTeX Full text DOI
Grimme, C., Kerschke, P., Aspar, P., Trautmann, H., Preuss, M., Deutz, A., Wang, H., & Emmerich, M. (2021). Peeking beyond peaks: Challenges and research potentials of continuous multimodal multi-objective optimization. Computers & Operations Research, 136, 105489.
More details BibTeX Full text DOI
Rodrigues, A., Kerschke, P., de B., P. C. A., Trautmann, H., Wagner, C., Hellingrath, B., & Polpo, A. (2021). Estimation of component reliability from superposed renewal processes by means of latent variables. Computational Statistics, 2021.
More details BibTeX DOI
Terveer, I., & Diepenbrock, F.-R. (2021). Warum ein Teil der Schwimmbad-Aufgabe im NRW-Abitur 2019 so nicht hätte gestellt werden dürfen. Stochastik in der Schule (SiS), 41(3).
More details BibTeX
Grimme, C. (2020). Künstliche Intelligenz: Begriffsklärungen und technische Einschätzungen als Grundlage für Regulierungsansätze. In Aufderheide, D., & Dabrowski, M. (Eds.), Digitalisierung und Künstliche Intelligenz: Wirtschaftsethische und moralökonomische Perspektiven (pp. 159–169). Volkswirtschaftliche Schriften (VWS): Vol. 574. Berlin: Duncker & Humblot.
More details BibTeX DOI
Anh, D. V., Bossek, J., Neumann, A., & Neumann, F. (2020). Evolving Diverse Sets of Tours for the Travelling Salesperson Problem. In Carlos, A. C. (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '20) (pp. 681–689). New York: ACM.
More details BibTeX DOI
Assenmacher, D., Adam, L., Trautmann, H., & Grimme, C. (2020). Towards Real-Time and Unsupervised Campaign Detection in Social Media. In Proceedings of the Florida Artificial Intelligence Research Society Conference, Florida, USA.
More details BibTeX Full text
Assenmacher, D., Clever, L., Pohl, J., Trautmann, H., & Grimme, C. (2020). A Two-Phase Framework for Detecting Manipulation Campaigns in Social Media. In Meiselwitz, G. (Ed.), Proceedings of the International Conference on Human-Computer Interaction (HCII 2020): Social Computing and Social Media. Design, Ethics, User Behavior, and Social Network Analysis (pp. 201–214). Cham: Springer International Publishing.
More details BibTeX DOI
Assenmacher, D., & Adam, L. &. F. L. &. T. H. &. G. C. (2020). Inside the tool set of automation: Free social bot code revisited. In Grimme, C., Preuß, M., Takes, F., & Waldherr, A. (Eds.), Disinformation in open online media (pp. 101–114). Lecture Notes in Computer Science. Wiesbaden: Springer.
More details BibTeX
Bossek, J., Neumann, A., & Neumann, F. (2020). Optimising Tours for the Weighted Traveling Salesperson Problem and the Traveling Thief Problem: A Structural Comparison of Solutions. In Proceedings of the Parallel Problem Solving from Nature (PPSN XVI), Leiden. (accepted / in press (not yet published))
More details BibTeX
Bossek, J., Casel, K., Kerschke, P., & Neumann, F. (2020). The Node Weight Dependent Traveling Salesperson Problem: Approximation Algorithms and Randomized Search Heuristics. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '20), Cancun, Mexico, 1286–1294.
More details BibTeX Full text DOI
Bossek, J., Doerr, C., & Kerschke, P. (2020). Initial Design Strategies and their Effects on Sequential Model-Based Optimization: An Exploratory Case Study Based on BBOB. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '20), Cancun, Mexico, 778–786.
More details BibTeX Full text DOI
Bossek, J., Doerr, C., Kerschke, P., Neumann, A., & Neumann, F. (2020). Evolving Sampling Strategies for One-Shot Optimization Tasks. In Proceedings of the 16th International Conference on Parallel Problem Solving from Nature (PPSN XVI), Leiden, The Netherlands, 111–124.
More details BibTeX DOI
Bossek, J., Grimme, C., Rudolph, G., & Trautmann, H. (2020). Towards Decision Support in Dynamic Bi-Objective Vehicle Routing. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 1–8.
More details BibTeX DOI
Bossek, J., Grimme, C., & Trautmann, H. (2020). Dynamic Bi-Objective Routing of Multiple Vehicles. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '20), Cancun, Mexico, 166–174.
More details BibTeX
Bossek, J., Kerschke, P., & Trautmann, H. (2020). Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated Algorithm Selection. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 1–8.
More details BibTeX Full text
Bossek, J., Neumann, F., Peng, P., & Sudholt, D. (2020). More Effective Evolutionary Algorithms for Graph Coloring Through Dynamic Optimization. In Carlos, A. C. (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '20) (pp. 1277–1285). New York: ACM.
More details BibTeX DOI
Carnein, M., Trautmann, H., Bifet, A., & Pfahringer, B. (2020). Towards Automated Configuration of Stream Clustering Algorithms. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD '19), Würzburg, Germany, 137–143.
More details BibTeX DOI
Carnein, M., Trautmann, H., Bifet, A., & Pfahringer, B. (2020). confStream: Automated Algorithm Selection and Configuration of Stream Clustering Algorithms. In Proceedings of the 14th Learning and Intelligent Optimization Conference (LION 2020), Athens, Greece, 80–95.
More details BibTeX DOI
Clever, L., Assenmacher, D., Müller, K., Seiler, M. V., Riehle, D. M., Preuss, M., & Grimme, C. (2020). FakeYou! — A Gamified Approach for Building and Evaluating Resilience Against Fake News. In van Duijn, , Max;, P., Mike;, S., Viktoria;, T., Frank;, V., & Suzan, (Eds.), Disinformation in Open Online Media. Second Multidisciplinary International Symposium, MISDOOM 2020, Leiden, The Netherlands, October 26–27, 2020, Proceedings (pp. 218–232). Lecture Notes in Computer Science: Vol. 12259. Cham: Springer.
More details BibTeX DOI
Lena, C., Frischlich, L., Trautmann, H., & Grimme, C. (2020). Automated detection of nostalgic text in the context of societal pessimism. In Proceedings of the MISDOOM 2019, Hamburg, Deutschland, 48–58.
More details BibTeX
Niemann, M., Welsing, J., Riehle, D. M., Brunk, J., Assenmacher, D., & Becker, J. (2020). Abusive Comments in Online Media and How to Fight Them: State of the Domain and a Call to Action. In van Duijn, , Max;, P., Mike;, S., Viktoria;, T., Frank;, V., & Suzan, (Eds.), Disinformation in Open Online Media. Second Multidisciplinary International Symposium, MISDOOM 2020, Leiden, The Netherlands, October 26–27, 2020, Proceedings (pp. 122–137). Lecture Notes in Computer Science: Vol. 12259. Cham: Springer.
More details BibTeX Full text DOI
Prager, R. P., Trautmann, H., Wang, H., Bäck, T. H. W., & Kerschke, P. (2020). Per-Instance Configuration of the Modularized CMA-ES by Means of Classifier Chains and Exploratory Landscape Analysis. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 996–1003.
More details BibTeX DOI
Riehle, D. M., Niemann, M., Brunk, J., Assenmacher, D., Trautmann, H., & Becker, J. (2020). Building an Integrated Comment Moderation System — Towards a Semi-Automatic Moderation tool. In Meiselwitz, G. (Ed.), Social Computing and Social Media. Participation, User Experience, Consumer Experience, and Applications of Social Computing. 12th International Conference, SCSM 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19–24, 2020, Proceedings, Part II (pp. 71–86). Lecture Notes in Computer Science: Vol. 12195. Cham: Springer.
More details BibTeX Full text DOI
Roostapour, V., Bossek, J., & Neumann, F. (2020). Runtime Analysis of Evolutionary Algorithms with Biased Mutation for the Multi-Objective Minimum Spanning Tree Problem. In Carlos, A. C. (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '20) (pp. 551–559). New York: ACM.
More details BibTeX DOI
Schäpermeier, L., Grimme, C., & Kerschke, P. (2020). One PLOT to Show Them All: Visualization of Efficient Sets in Multi-Objective Landscapes. In Proceedings of the 16th International Conference on Parallel Problem Solving from Nature (PPSN XVI), Leiden, The Netherlands, 154–167.
More details BibTeX Full text DOI
Seiler, M. V., Pohl, J., Bossek, J., Kerschke, P., & Trautmann, H. (2020). Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm Selection on the Traveling Salesperson Problem. In Proceedings of the 16th International Conference on Parallel Problem Solving from Nature (PPSN XVI), Leiden, The Netherlands, 48–64.
More details BibTeX Full text DOI
Seiler, M. V., Trautmann, H., & Kerschke, P. (2020). Enhancing Resilience of Deep Learning Networks By Means of Transferable Adversaries. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 1–8.
More details BibTeX Full text DOI
Steinhoff, V., Kerschke, P., Aspar, P., Trautmann, H., & Grimme, C. (2020). Multiobjectivization of Local Search: Single-Objective Optimization Benefits From Multi-Objective Gradient Descent. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 2445–2452.
More details BibTeX Full text DOI
Assenmacher, D., Clever, L., Frischlich, L., Quandt, T., Trautmann, , Heike, , & Grimme, C. (2020). Demystifying social bots: On the intelligence of automated social media actors. Social media — society, 00.
More details BibTeX
Bossek, J., Kerschke, P., & Trautmann, H. (2020). A Multi-Objective Perspective on Performance Assessment and Automated Selection of Single-Objective Optimization Algorithms. Applied Soft Computing, 2020(88), 105901.
More details BibTeX Full text DOI
Rothmeier, K., Pflanzl, N., Hüllmann, J. A., & Preuss, M. (2020). Prediction of Player Churn and Disengagement Based on User Activity Data of a Freemium Online Strategy Game. IEEE Transactions on Games, 2020.
More details BibTeX Full text DOI
Carnein, M. (2020). Machine Learning on Data Streams — Improving the Applicability and Performance of Stream Clustering Algorithms. at the University of Münster.
More details BibTeX
Bartz-Beielstein, T., Doerr, C., Bossek, J., Chandrasekaran, S., Eftimov, T., Fischbach, A., Kerschke, P., López-Ibáñez, M., Malan, K. M., Moore, J. H., Naujoks, B., Orzechowski, P., Volz, V., Wagner, M., & Weise, T. (2020). Benchmarking in Optimization: Best Practice and Open Issues.
More details BibTeX Full text
Bossek, J., Casel, K., Kerschke, P., & Neumann, F. (2020). The Node Weight Dependent Traveling Salesperson Problem: Approximation Algorithms and Randomized Search Heuristics.
More details BibTeX Full text
Bossek, J., & Neumann, F. (2020). Evolutionary Diversity Optimization and the Minimum Spanning Tree Problem.
More details BibTeX Full text
Neumann, A., Bossek, J., & Neumann, F. (2020). Computing Diverse Sets of Solutions for Monotone Submodular Optimisation Problems.
More details BibTeX Full text
Steinhoff, V., Kerschke, P., & Grimme, C. (2020). Empirical Study on the Benefits of Multiobjectivization for Solving Single-Objective Problems.
More details BibTeX Full text
Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., & Vichi, M. (Eds.) (2019). Applications in Statistical Computing — From Music Data Analysis to Industrial Quality Improvement. Studies in Classification, Data Analysis, and Knowledge Organization. Springer International Publishing.
More details BibTeX
Kerschke, P., & Trautmann, H. (2019). Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-package flacco. In Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., & Vichi, M. (Eds.), Applications in Statistical Computing (pp. 93–123). Springer.
More details BibTeX DOI
Bossek, J., & Grimme, C. (2019). Solving Scalarized Subproblems within Evolutionary Algorithms for Multi-Criteria Shortest Path Problems. In Battiti, R., Brunato, M., Kotsireas, I., & Pardalos, P. (Eds.), Learning and Intelligent Optimization (pp. 184–198). Lecture Notes in Computer Science: Vol. 11353. Cham: Springer.
More details BibTeX DOI
Bossek, J., Grimme, C., & Neumann, F. (2019). On the Benefits of Biased Edge-Exchange Mutation for the Multi-Criteria Spanning Tree Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '19), Prague, Czech Republic, 516–523.
More details BibTeX
Bossek, J., Neumann, F., Peng, P., & Sudholt, D. (2019). Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '19), Prague, Czech Republic, 1443–1451.
More details BibTeX DOI
Bossek, J., & Trautmann, H. (2019). Multi-Objective Performance Measurement: Alternatives to PAR10 and Expected Running Time. In Battiti, R., Brunato, M., Kotsireas, I., & Pardalos, P. (Eds.), Learning and Intelligent Optimization (pp. 215–219). Lecture Notes in Computer Science: Vol. 11353. Cham: Springer.
More details BibTeX
Bossek, J., Grimme, C., Meisel, S., Rudolph, G., & Trautmann, H. (2019). Bi-Objective Orienteering: Towards a Dynamic Multi-Objective Evolutionary Algorithm. In Deb, K., Goodman, E., Coello, C. C. A., Klamroth, K., Miettinen, K., Mostaghim, S., & Reed, P. (Eds.), Evolutionary Multi-Criterion Optimization (EMO) (pp. 516–528). Lecture Notes in Computer Science: Vol. 11411. Springer International Publishing.
More details BibTeX DOI
Bossek, J., Kerschke, P., Neumann, A., Wagner, M., Neumann, F., & Trautmann, H. (2019). Evolving Diverse TSP Instances by Means of Novel and Creative Mutation Operators. In Proceedings of the 15th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA XV), Potsdam, Germany, 58–71.
More details BibTeX DOI
Bossek, J., & Sudholt, D. (2019). Time Complexity Analysis of RLS and (1+1) EA for the Edge Coloring Problem. In Proceedings of the 15th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA XV), Potsdam, Germany, 102–115.
More details BibTeX DOI
Carnein, M., Homann, L., Trautmann, H., & Vossen, G. (2019). A Recommender System Based on Omni-Channel Customer Data. In Proceedings of the 21st IEEE Conference on Business Informatics (CBI' 19), Moscow, Russia, 65–74.
More details BibTeX
Carnein, M., & Trautmann, H. (2019). Customer Segmentation Based on Transactional Data Using Stream Clustering. In Proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD '19), Macau, China, 280–292.
More details BibTeX
Doerr, C., Dreo, J., & Kerschke, P. (2019). Making a Case for (Hyper-)Parameter Tuning as Benchmark Problems. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '19) Companion, Prague, Czech Republic, 1755–1764.
More details BibTeX DOI
Grimme, C., Kerschke, P., Emmerich, M. T. M., Preuss, M., Deutz, A. H., & Trautmann, H. (2019). Sliding to the Global Optimum: How to Benefit from Non-Global
Optima in Multimodal Multi-Objective Optimization. In Proceedings of the International Global Optimization Workshop (LeGO 2018), Leiden, The Netherlands, 020052-1-020052-4.
More details BibTeX Full text DOI
Grimme, C., Kerschke, P., & Trautmann, H. (2019). Multimodality in Multi-Objective Optimization — More Boon than Bane?. In Proceedings of the 10th International Conference on Evolutionary Multi-Criterion Optimization (EMO), East Lansing, MI, USA, 126–138.
More details BibTeX Full text DOI
Kerschke, P., & Preuss, M. (2019). Exploratory Landscape Analysis. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '19) Companion, Prague, Czech Republic, 1137–1155.
More details BibTeX DOI
Prager, R. P., Troost, L., Brüggenjürgen, S., Melhart, D., Yannakakis, G., & Preuss, M. (2019). An Experiment on Game Facet Combination. In Proceedings of the IEEE Conference on Games, London.
More details BibTeX Full text
Rapin, J., Gallagher, M., Kerschke, P., Preuss, M., & Teytaud, O. (2019). Exploring the MLDA Benchmark on the Nevergrad Platform. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '19) Companion, Prague, Czech Republic, 1888–1896.
More details BibTeX DOI
Valdez, A., Adam, L., Assenmacher, D., Burbach, L., Bonart, M., Frischlich, L., & Schär, P. (2019). Computational Methods in Professional Communication. In Proceedings of the International Professional Communication Conference (ProComm), Aachen, 275–285.
More details BibTeX
Volz, V., Naujoks, B., Kerschke, P., & Tušar, T. (2019). Single- and Multi-Objective Game-Benchmarkfor Evolutionary Algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '19), Prague, Czech Republic, 647–655.
More details BibTeX DOI
Bossek, J. (2019). Evolutionary Computation in R with the ecr Package'. Poster session presented at the useR! 2019, Toulouse, France. (accepted / in press (not yet published))
More details BibTeX
Carnein, M., & Trautmann, H. (2019). Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering Algorithms. Business and Information Systems Engineering (BISE), 61(3), 277–297.
More details BibTeX
Casalicchio, G., Bossek, J., Lang, M., Kirchhoff, D., Kerschke, P., Hofner, B., Seibold, H., Vanschoren, J., & Bischl, B. (2019). OpenML: An R package to connect to the machine learning platform OpenML. Computational Statistics, 2019, 977–991.
More details BibTeX Full text DOI
Humpert, I., Di, M. D., Püschel, A. W., & Pietschmann, J.-F. (2019). On the Role of Vesicle Transport in Neurite Growth: Modelling and Experiments. Arxiv, 2020. (submitted / under review)
More details BibTeX Full text
Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated Algorithm Selection: Survey and Perspectives. Evolutionary Computation (ECJ), 27(1), 3–45.
More details BibTeX Full text DOI
Kerschke, P., & Trautmann, H. (2019). Automated Algorithm Selection on Continuous Black-Box Problems By Combining Exploratory Landscape Analysis and Machine Learning. Evolutionary Computation (ECJ), 27(1), 99–127.
More details BibTeX Full text DOI
Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., & Emmerich, M. (2019). Search Dynamics on Multimodal Multi-Objective Problems. Evolutionary Computation (ECJ), 27(4), 577–609.
More details BibTeX Full text DOI
Bossek, J., Kerschke, P., Neumann, A., Neumann, F., & Doerr, C. (2019). One-Shot Decision-Making with and without Surrogates.
More details BibTeX Full text
Grimme, C., & Bossek, J. (2018). Einführung in die Optimierung — Konzepte, Methoden und Anwendungen (1st ed.). Springer Vieweg.
More details BibTeX DOI
Bossek, J. (2018). Performance Assessment of Multi-Objective Evolutionary Algorithms With the R Package ecr. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '18) Companion, Kyoto, Japan, 1350–1356.
More details BibTeX DOI
Bossek, J., Grimme, C., Meisel, S., Rudolph, G., & Trautmann, H. (2018). Local Search Effects in Bi-Objective Orienteering. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '18), Kyoto, Japan, 585–592.
More details BibTeX DOI
Grimme, C., Assenmacher, D., & Adam, L. (2018). Changing Perspectives: Is it Sufficient to Detect Social Bots?. In Meiselwitz, G. (Ed.), Social Computing and Social Media. User Experience and Behavior (pp. 445–461). Lecture Notes in Computer Science: Vol. 10913. Cham: Springer International Publishing.
More details BibTeX DOI
Kerschke, P., Bossek, J., & Trautmann, H. (2018). Parameterization of State-of-the-Art Performance Indicators: A Robustness Study Based on Inexact TSP Solvers. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '18) Companion, Kyoto, Japan, 1737–1744.
More details BibTeX Full text DOI
Pappa, G. L., Emmerich, M. T., Bazzan, A., Browne, W., Deb, K., Doerr, C., Ðurasević, M., Epitropakis, M. G., Haraldsson, S. O., Jakobovic, D., Kerschke, P., Krawiec, K., Lehre, P. K., Li, X., Lissovoi, A., Malo, P., Martí, L., Mei, Y., Merelo, J. J., Miller, J. F., Moraglio, A., Nebro, A. J., Nguyen, S., Ochoa, G., Oliveto, P., Picek, S., Pillay, N., Preuss, M., Schoenauer, M., Senkerik, R., Sinha, A., Shir, O., Sudholt, D., Whitley, D., Wineberg, M., Woodward, J., & Zhang, M. (2018). Tutorials at PPSN 2018. In Auger, A., Fonseca, C. M., Lourenço, N., Machado, P., Paquete, L., & Whitley, D. (Eds.), Proceedings of International Conference on Parallel Problem Solving from Nature (PPSN XV) (pp. 477–489). Cham: Springer International Publishing.
More details BibTeX Full text DOI
Preuss, M., Pfeiffer, T., Volz, V., & Pflanzl, N. (2018). Integrated Balancing of an RTS Game: Case Study and Toolbox Refinement. In Proceedings of the 2018 IEEE Conference on Computational Intelligence and Games, CIG, Maastricht. (accepted / in press (not yet published))
More details BibTeX
Purshouse, R., Zarges, C., Cussat-Blanc, S., Epitropakis, M. G., Gallagher, M., Jansen, T., Kerschke, P., Li, X., Lobo, F. G., Miller, J., Oliveto, P. S., Preuss, M., Squillero, G., Tonda, A., Wagner, M., Weise, T., Wilson, D., Wróbel, B., & Zamuda, A. (2018). Workshops at PPSN 2018. In Auger, A., Fonseca, C. M., Lourenço, N., Machado, P., Paquete, L., & Whitley, D. (Eds.), Proceedings of International Conference on Parallel Problem Solving from Nature (PPSN XV) (pp. 490–497). Cham: Springer International Publishing.
More details BibTeX Full text DOI
van Engelen, J., van Lier, J., Takes, F., & Trautmann, H. (2018). Accurate WiFi based indoor positioning with continuous location sampling. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Database (ECML/PKDD), Dublin, Ireland, 524–540.
More details BibTeX
Bossek, J. (2018). grapherator: A Modular Multi-Step Graph Generator. The Journal of Open Source Software, 2018.
More details BibTeX
Burger, M., Humpert, I., & Pietschmann, J.-F. (2018). On Fokker-Planck Equations with In- and Outflow of Mass. Kinetic and Related Models (Kinet. Relat. Models), 2019. (accepted / in press (not yet published))
More details BibTeX Full text
Carnein, M., & Trautmann, H. (2018). evoStream — Evolutionary Stream Clustering Utilizing Idle Times. Big Data Research, 14, 101–111.
More details BibTeX DOI
Kerschke, P., Kotthoff, L., Bossek, J., Hoos, H. H., & Trautmann, H. (2018). Leveraging TSP Solver Complementarity through Machine Learning. Evolutionary Computation (ECJ), 26(4), 597–620.
More details BibTeX Full text DOI
Li, L., Wang, Y., Trautmann, H., Jing, N., & Emmerich, M. (2018). Multiobjective evolutionary algorithms based on target region preferences. Swarm and Evolutionary Computation, 40, 196–215.
More details BibTeX Full text DOI
Segler, M., Preuss, M., & Waller, M. (2018). Planning Chemical Syntheses with Deep Neural Networks and Symbolic AI. Nature, 555, 604–610.
More details BibTeX
Bossek, J. (2018). Investigating Problem Hardness in (Multi-Objective) Combinatorial Optimization: Algorithm Selection, Instance Generation and Tailored Algorithm Design. at the Universität Münster. (online first)
More details BibTeX
Frischlich, L., & Grimme, C. (2018). Manipulation im Netz: (Medien-) Pädagogik zwischen Fake Accounts, Social Bots, und Propaganda. Münster: Online Whitepaper.
More details BibTeX Full text
Adrián, S. H. V., Lara, A., Trautmann, H., Rudolph, G., & Schütze, O. (2017). The Directed Search Method for Unconstrained Parameter Dependent Multi-objective Optimization Problems. In Schütze, O., Trujillo, L., Legrand, P., & Maldonado, Y. (Eds.), NEO 15 (pp. 281–330). Cham: Springer International Publishing.
More details BibTeX Full text DOI
Li, L., Yevseyeva, I., Basto-Fernandes, V., Trautmann, H., Jing, N., & Emmerich, M. (2017). Building and Using an Ontology of Preference-Based Multiobjective Evolutionary Algorithms. In Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M., Jin, Y., & Grimme, C. (Eds.), Evolutionary Multi-Criterion Optimization: 9th International Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings (pp. 406–421). Cham: Springer International Publishing.
More details BibTeX Full text DOI
Tierney, K., Handali, J., Grimme, C., & Trautmann, H. (2017). Multi-objective Optimization for Liner Shipping Fleet Repositioning. In Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M., Jin, Y., & Grimme, C. (Eds.), Evolutionary Multi-Criterion Optimization: 9th International Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings (pp. 622–638). Cham: Springer International Publishing.
More details BibTeX Full text DOI
Bossek, J., & Grimme, C. (2017). An Extended Mutation-Based Priority-Rule Integration Concept for Multi-Objective Machine Scheduling. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Honolulu, Hawaii.
More details BibTeX DOI
Bossek, J., & Grimme, C. (2017). A Pareto-Beneficial Sub-Tree Mutation for the Multi-Criteria Minimum Spanning Tree Problem. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Honolulu, Hawai, 3280–3287.
More details BibTeX DOI
Bossek, J. (2017). ecr 2.0: A Modular Framework for Evolutionary Computation in R. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '17) Companion, Berlin, Germany.
More details BibTeX DOI
Carnein, M., Assenmacher, D., & Trautmann, H. (2017). An Empirical Comparison of Stream Clustering Algorithms. In Proceedings of the ACM International Conference on Computing Frontiers (CF '17), Siena, Italy, 361–365.
More details BibTeX DOI
Carnein, M., Assenmacher, D., & Trautmann, H. (2017). Stream Clustering of Chat Messages with Applications to Twitch Streams. In de Cesare, S., & Ulrich, F. (Eds.), Proceedings of the 36th International Conference on Conceptual Modeling (ER'17) (pp. 79–88). Springer International Publishing.
More details BibTeX DOI
Carnein, M., Heuchert, M., Homann, L., Trautmann, H., Vossen, G., Becker, J., & Kraume, K. (2017). Towards Efficient and Informative Omni-Channel Customer Relationship Management. In de Cesare, S., & Ulrich, F. (Eds.), Proceedings of the 36th International Conference on Conceptual Modeling (ER'17) (pp. 69–78). Lecture Notes in Computer Science: Vol. 10651. Springer International Publishing.
More details BibTeX DOI
Carnein, M., Homann, L., Trautmann, H., Vossen, G., & Kraume, K. (2017). Customer Service in Social Media — An Empirical Study of the Airline Industry. In Bernhard, M. a. N. R. a. H. S. a. M. K. a. A. T. a. O. K. a. M. W. (Ed.), Proceedings of the 17th Conference on Database Systems for Business, Technology, and Web (BTW '17) (pp. 33–40). Lecture Notes in Informatics (LNI): Vol. P-266. Gesellschaft für Informatik.
More details BibTeX
Hanster, C., & Kerschke, P. (2017). flaccogui: Exploratory Landscape Analysis for Everyone. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '17) Companion, Berlin, Germany, 1215–1222.
More details BibTeX Full text DOI
Kerschke, P., & Grimme, C. (2017). An Expedition to Multimodal Multi-Objective Optimization Landscapes. In Proceedings of the 9th International Conference on Evolutionary Multi-Criterion Optimization (EMO), Münster, Germany, 329–343.
More details BibTeX Full text DOI
Kerschke, P., & Preuss, M. (2017). Exploratory Landscape Analysis: Advanced Tutorial at GECCO 2017. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '17) Companion, Berlin, Germany, 762–781.
More details BibTeX Full text DOI
Khalifa, A., Preuss, M., & Togelius, J. (2017). Multi-objective Adaptation of a Parametrized GVGAI Agent Towards Several Games. In Proceedings of the EMO 2017, Münster, 359–374.
More details BibTeX DOI
Lang, M., & Grimme, C. (2017). Towards Standardized and Seamless Integration of Expert Knowledge into Multi-objective Evolutionary Optimization Algorithms. In Proceedings of the Evolutionary Multi-Criterion Optimization, Münster, 375–389.
More details BibTeX Full text DOI
Wessing, S., & Preuss, M. (2017). The true destination of EGO is multi-local optimization. In Proceedings of the 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Arequipa, Peru.
More details BibTeX
Ahrari, A., Deb, K., & Preuss, M. (2017). Multimodal Optimization by Covariance Matrix Self-Adaptation Evolution Strategy with Repelling Subpopulations. Evolutionary Computation 25(3): 439-471 (2017), 25(3), 439–471.
More details BibTeX
Bossek, J. (2017). mcMST: A Toolbox for the Multi-Criteria Minimum Spanning Tree Problem. The Journal of Open Source Software, 2017.
More details BibTeX DOI
Bossek, J. (2017). smoof: Single- and Multi-Objective Optimization Test Functions. The R Journal, 2017(1), 103–113.
More details BibTeX Full text
Grimme, C., Preuss, M., Adam, L., & Trautmann, H. (2017). Social Bots: Human-Like by Means of Human Control?. Big Data, 5(4), 279–293.
More details BibTeX Full text DOI
Kerschke, P. (2017). Automated and Feature-Based Problem Characterization and Algorithm Selection Through Machine Learning. at the University of Münster.
More details BibTeX Full text
Trautmann, H., Vossen, G., Homann, L., Carnein, M., & Kraume, K. (2017). Challenges of Data Management and Analytics in Omni-Channel CRM. In Becker, J., Backhaus, K., Dugas, M., Hellingrath, B., Hoeren, T., Klein, S., Kuchen, H., Trautmann, H., & Vossen, G. (Eds.), ERCIS Working Papers: Vol. 28. Münster: European Research Center for Information Systems.
More details BibTeX
Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., & Lang, M. (2017). mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions.
More details BibTeX Full text
Casalicchio, G., Bossek, J., Lang, M., Kirchhoff, D., Kerschke, P., Hofner, B., Seibold, H., Vanschoren, J., & Bischl, B. (2017). OpenML: An R Package to Connect to the Networked Machine Learning Platform OpenML.
More details BibTeX Full text DOI
Kerschke, P. (2017). Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package flacco.
More details BibTeX Full text
Rudolph, G., Schütze, O., & Trautmann, H. (2016). On the Closest Averaged Hausdorff Archive for a Circularly Convex Pareto Front. In Squillero, G., & Burelli, P. (Eds.), Applications of Evolutionary Computation: 19th European Conference, EvoApplications 2016, Porto, Portugal, March 30 — April 1, 2016, Proceedings, Part II (pp. 42–55). Cham: Springer International Publishing.
More details BibTeX Full text DOI
Beyer, M., Agureikin, A., Anokhin, A., Laenger, C., Nolte, F., Winterberg, J., Renka, M., Rieger, M., Pflanzl, N., Preuss, M., & Volz, V. (2016). An Integrated Process for Game Balancing. In Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG 2016), Santorini, Greece. (accepted / in press (not yet published))
More details BibTeX
Blot, A., Hoos, H., Jourdan, L., Marmion, M., & Trautmann, H. (2016). MO-ParamILS: A Multi-objective Automatic Algorithm Configuration Framework. In Joaquin, V. e. a. (Ed.), LION 2016: Learning and Intelligent Optimization (pp. 32–47). LNTCS: Vol. 10079. Cham: Springer International Publishing.
More details BibTeX DOI
Bossek, J., & Trautmann, H. (2016). Evolving Instances for Maximizing Performance Differences of State-of-The-Art Inexact TSP Solvers. In Festa, P., Sellmann, M., & Vanschoren, J. (Eds.), Learning and Intelligent Optimization (pp. 48–59). Lecture Notes in Computer Science: Vol. 10079. Springer International Publishing.
More details BibTeX DOI
Bossek, J., & Trautmann, H. (2016). Understanding Characteristics of Evolved Instances for State-of-the-Art Inexact TSP
Solvers with Maximum Performance Difference. In Adorni, G., Cagnoni, S., Gori, M., & Maratea, M. (Eds.), AI*IA 2016 Advances in Artificial Intelligence (pp. 3–12). Lecture Notes in Computer Science: Vol. 10037. Cham: Springer.
More details BibTeX DOI
Carnein, M., Schöttle, P., & Böhme, R. (2016). Telltale Watermarks for Counting JPEG Compressions. In Proceedings of the IS&T Electronic Imaging: Media Watermarking, Security, and Forensics (EI '16), San Francisco, CA, 1–10.
More details BibTeX DOI
Horn, H., Volz, V., Perez, L. D., & Preuss, M. (2016). MCTS/EA hybrid GVGAI players and game difficulty estimation. In Proceedings of the Computational Intelligence and Games, Santorini, 1–8.
More details BibTeX DOI
Kerschke, P., Preuss, M., Wessing, S., & Trautmann, H. (2016). Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '16), Denver, CO, USA, 229–236.
More details BibTeX Full text DOI
Kerschke, P., & Trautmann, H. (2016). The R-Package FLACCO for Exploratory Landscape Analysis with Applications to Multi-Objective Optimization Problems. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Kanada.
More details BibTeX Full text DOI
Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., & Emmerich, M. (2016). Towards Analyzing Multimodality of Multiobjective Landscapes. In Proceedings of the 14th International Conference on Parallel Problem Solving from Nature (PPSN XIV), Edinburgh, Scotland, 962–972.
More details BibTeX Full text DOI
Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Fréchette, A., Hoos, H. H., Hutter, F., Leyton-Brown, K., Tierney, K., & Vanschoren, J. (2016). ASlib: A Benchmark Library for Algorithm Selection. Artificial Intelligence Journal, 237, 41–58.
More details BibTeX Full text DOI
Buro, M., Ontanón, S., & Preuss, M. (2016). Guest Editorial Real-Time Strategy Games. IEEE Transactions on Computational Intelligence and AI in Games, 8(4), 317–318.
More details BibTeX DOI
Liboschik, T., Kerschke, P., Fokianos, K., & Fried, R. (2016). Modelling interventions in INGARCH processes. International Journal of Computer Mathematics, 93(4), 640–657.
More details BibTeX Full text DOI
Neumann, F., & Trautmann, H. (2016). Working Group Report: Bridging the Gap Between Experiments and Theory Using Feature-Based Run-Time Analysis; Theory of Evolutionary Algorithms (Dagstuhl Seminar 15211). Dagstuhl Reports, 5(5), 78–79.
More details BibTeX Full text DOI
Rudolph, G., Schütze, O., Grimme, C., Domínguez-Medina, C., & Trautmann, H. (2016). Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results. Computational Optimization and Applications (Comput. Optim. Appl.), 64(2), 589–618.
More details BibTeX Full text DOI
Schütze, O., Sosa, H. V., Trautmann, H., & Rudolph, G. (2016). The Hypervolume based Directed Search Method for Multi-Objective Optimization Problems. Journal of Heuristics, 22(3), 273–300.
More details BibTeX DOI
Wessing, S., & Preuss, M. (2016). On multiobjective selection for multimodal optimization. Computational Optimization and Applications (Comput. Optim. Appl.), 63(3), 875–902.
More details BibTeX Full text DOI
Preuss, M. (2015). Multimodal Optimization by Means of Evolutionary Algorithms. Natural Computing Series. Springer.
More details BibTeX Full text DOI
Terveer, I. (2015). Mathematik Formeln — Wirtschaftswissenschaften (1.). Konstanz und München: UVK.
More details BibTeX
Preuss, M., Wessing, S., Rudolph, G., & Sadowski, G. (2015). Solving Phase Equilibrium Problems by Means of Avoidance-Based Multiobjectivization. In Kacprzyk, J., & Pedrycz, W. (Eds.), Springer Handbook of Computational Intelligence (pp. 1159–1171). Springer.
More details BibTeX Full text DOI
Bossek, J., Bischl, B., Wagner, T., & Rudolph, G. (2015). Learning Feature-Parameter Mappings for Parameter Tuning via the Profile Expected Improvement. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '15), Madrid, Spanien.
More details BibTeX
Carnein, M., Schöttle, P., & Böhme, R. (2015). Forensics of High-Quality JPEG Images with Color Subsampling. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS '15), Rome, Italy, 1–6.
More details BibTeX DOI
Chinnov, A., Kerschke, P., Meske, C., Stieglitz, S., & Trautmann, H. (2015). An Overview of Topic Discovery in Twitter Communication through Social Media Analytics. In Proceedings of the 20th Americas Conference on Information Systems (AMCIS '15), Puerto Rico, 1–10.
More details BibTeX Full text
Grimme, C., Meisel, S., Trautmann, H., Rudolph, G., & Wölck, M. (2015). Multi-Objective Analysis of Approaches to Dynamic Routing Of a Vehicle. In Proceedings of the European Conference On Information Systems, Münster, Germany.
More details BibTeX
Kerschke, P., Preuss, M., Wessing, S., & Trautmann, H. (2015). Detecting Funnel Structures by Means of Exploratory Landscape Analysis. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '15), Madrid, Spain, 265–272.
More details BibTeX Full text DOI
Kotthoff, L., Kerschke, P., Hoos, H. H., & Trautmann, H. (2015). Improving the State of the Art in Inexact TSP Solving using Per-Instance Algorithm Selection. In Dhaenens, C., Jourdan, L., & Marmion, M.-E. (Eds.), Learning and Intelligent Optimization, 9th International Conference (pp. 202–217). Cham: Springer International Publishing.
More details BibTeX Full text DOI
Meisel, S., Grimme, C., Bossek, J., Wölck, M., Rudolph, G., & Trautmann, H. (2015). Evaluation of a Multi-Objective EA on Benchmark Instances for Dynamic Routing of a Vehicle. In Proceedings of the Genetic and Evolutionary Computation Conference, Madrid, Spain, 425–432.
More details BibTeX DOI
Quadflieg, J., Rudolph, G., & Preuss, M. (2015). How costly is a good compromise: Multi-objective TORCS controller parameter optimization. In Proceedings of the CIG 2015, Tainan, Taiwan, 454–460.
More details BibTeX Full text DOI
Sosa, H. V., Schütze, O., Trautmann, H., & Rudolph, G. (2015). On the Behavior of Stochastic Local Search within Parameter Dependent MOPs. In Proceedings of the 8th International Conference on Evolutionary Multi-Criterion Optimization, Guimaraes, Portugal, 126–140.
More details BibTeX DOI
Stammer, D., Mannheim, H., Gunther, T., & Preuss, M. (2015). Player-Adaptive Spelunky level generation. In Proceedings of the 2015 IEEE Conference on Computational Intelligence and Games, CIG 2015, Tainan, Taiwan, 130–137.
More details BibTeX Full text DOI
Martí, L., Grimme, C., Kerschke, P., Trautmann, H., & Rudolph, G. (2015). Averaged Hausdorff Approximations of Pareto Fronts Based on Multiobjective Estimation of Distribution Algorithms. Poster session presented at the Genetic and Evolutionary Computation Conference (GECCO '15), Madrid, Spain.
More details BibTeX Full text DOI
Brockhoff, D., Wagner, T., & Trautmann, H. (2015). R2 Indicator Based Multiobjective Search. Evolutionary Computation Journal, 23(3), 369–395.
More details BibTeX Full text DOI
Lucas, S., Mateas, M., Preuss, M., Spronck, P., & Togelius, J. (2015). Artificial and Computational Intelligence in Games: Integration (Dagstuhl Seminar 15051). Dagstuhl Reports, 5(1), 207–242.
More details BibTeX Full text DOI
Mersmann, O., Preuss, M., Trautmann, H., Bischl, B., & Weihs, C. (2015). Analyzing the BBOB Results by Means of Benchmarking Concepts. Evolutionary Computation Journal, 23(1), 161–185.
More details BibTeX
Preuss, M., & Rudolph, G. (2015). Conference report on IEEE CIG 2014 [Conference reports]. IEEE Computational Intelligence Magazine, 10(1), 14–15.
More details BibTeX Full text DOI
Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M. T., Malitsky, Y., Fréchette, A., Hoos, H. H., Hutter, F., Leyton-Brown, K., Tierney, K., & Vanschoren, J. (2015). ASlib: A Benchmark Library for Algorithm Selection.
More details BibTeX Full text
Martí, L., Grimme, C., Kerschke, P., Trautmann, H., & Rudolph, G. (2015). Averaged Hausdorff Approximations of Pareto Fronts based on Multiobjective Estimation of Distribution Algorithms.
More details Full text DOI
Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J.-Q., Grimme, C., Rudolph, G., Bischl, B., & Trautmann, H. (2014). Cell Mapping Techniques for Exploratory Landscape Analysis. In Tantar, A.-A., Tantar, E., Sun, J.-Q., Zhang, W., Ding, Q., Schütze, O., Emmerich, M. T. M., Legrand, P., Del, M. P., & Coello, C. C. A. (Eds.), EVOLVE — A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V (pp. 115–131). Advances in Intelligent Systems and Computing: Vol. 288. Cham: Springer International Publishing.
More details BibTeX Full text DOI
Rudolph, G., Schütze, O., Grimme, C., & Trautmann, H. (2014). A Multiobjective Evolutionary Algorithm Guided by Averaged Hausdorff Distance to Aspiration Sets. In Tantar, A., Tantar, E., Sun, J., Zhang, W., Ding, Q., Schütze, O., Emmerich, M., Legrand, P., Del, M. P., & Coello, C. C. (Eds.), EVOLVE — A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V (pp. 261–273). Advances in Intelligent Systems and Computing: Vol. 288. Springer International Publishing.
More details BibTeX Full text DOI
Burelli, P., & Preuss, M. (2014). Automatic camera control: A dynamic multi-objective perspective. In Proceedings of the 17th European Conference on Applications of Evolutionary Computation, EvoApplications 2014, Granada, Espania, 361–373.
More details BibTeX Full text DOI
Carnein, M., Quiring, E., Haack, A., Möhring, A., & Becker, J. (2014). Laiengerechte Erzeugung von 3D-Animationen am Beispiel von textuellen Unfallbeschreibungen. In Proceedings of the 17th International Legal Informatics Symposium (IRIS '14), Salzburg, Austria, 473–480.
More details BibTeX Full text
Carnein, M., Schöttle, P., & Böhme, R. (2014). Predictable Rain? Steganalysis of Public-key Steganography Using Wet Paper Codes. In Unterweger, A., Uhl, A., Katzenbeisser, S., Kwitt, R., & Piva, A. (Eds.), Proceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security (IH & MMSec '14) (pp. 97–108). New York, NY, USA: ACM.
More details BibTeX DOI
Preuss, M., Liapis, A., & Togelius, J. (2014). Searching for good and diverse game levels. In Proceedings of the 2014 IEEE Conference on Computational Intelligence and Games, CIG 2014, Dortmund, Deutschland.
More details BibTeX Full text DOI
Preuss, M., Voll, P., Bardow, A., & Rudolph, G. (2014). Looking for alternatives: Optimization of energy supply systems without superstructure. In Proceedings of the 17th European Conference on Applications of Evolutionary Computation, EvoApplications 2014, Granada, Espania, 177–188.
More details BibTeX Full text DOI
Rudolph, G., Grimme, C., Schütze, O., & Trautmann, H. (2014). An Aspiration Set EMOA Based on Averaged Hausdorff Distances. In Proceedings of the Learning and Intelligent OptimizatioN Conference (LION 8), Gainesville, Florida, USA, 153–156.
More details BibTeX Full text
Wessing, S., Preuss, M., & Trautmann, H. (2014). Stopping Criteria for Multimodal Optimization. In Proceedings of the Parallel Problem Solving from Nature — PPSN XIII, Ljubljana, Slovenia, 141–150.
More details BibTeX Full text DOI
Quadflieg, J., Preuss, M., & Rudolph, G. (2014). Driving as a human: A track learning based adaptable architecture for a car racing controller. Genetic Programming and Evolvable Machines, 15(4), 433–476.
More details BibTeX Full text DOI
Bartz-Beielstein, T., & Preuss, M. (2013). Experimental Analysis of Optimization Algorithms: Tuning and Beyond. In Borenstein, Y., & Moraglio, A. (Eds.), Theory and Principled Methods for the Design of Metaheuristics (pp. 205–245). Springer.
More details BibTeX DOI
Grimme, C., Kemmerling, M., & Lepping, J. (2013). On the Integration of Theoretical Single-Objective Scheduling Results for Multi-objective Problems. In Tantar, E., Tantar, A., Bouvry, P., Del, M. P., Legrand, P., Coello, C. C., & Schütze, O. (Eds.), EVOLVE- A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation (pp. 333–363). Studies in Computational Intelligence: Vol. 447. Springer Berlin Heidelberg.
More details BibTeX Full text DOI
Kemmerling, M., Ackermann, N., & Preuss, M. (2013). Making diplomacy bots individual. In Hingston, P. (Ed.), Believable Bots: Can Computers Play Like People? (pp. 265–288). Springer-Verlag Berlin Heidelberg.
More details BibTeX Full text DOI
Sosa, H. V., Schütze, O., Rudolph, G., & Trautmann, H. (2013). The Directed Search Method for Pareto Front Approximations with Maximum Dominated Hypervolume. In Emmerich, M., Deutz, A., Schuetze, O., Bäck, T., Tantar, A., Moral, P., Legrand, P., Bouvry, P., & Coello, C. (Eds.), EVOLVE — A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV (pp. 189–205). Advances in Intelligent Systems and Computing: Vol. 227. Springer International Publishing.
More details BibTeX Full text DOI
Trautmann, H., Rudolph, G., Dominguez-Medina, C., & Schütze, O. (2013). Finding Evenly Spaced Pareto Fronts for Three-Objective Optimization Problems. In Schütze, O., Coello, C. C., Tantar, A., Tantar, E., Bouvry, P., Del, M. P., & Legrand, P. (Eds.), EVOLVE — A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II (pp. 89–105). Advances in Intelligent Systems and Computing: Vol. 175. Springer Berlin Heidelberg.
More details BibTeX Full text DOI
Dominguez-Medina, C., Rudolph, G., Schütze, O., & Trautmann, H. (2013). Evenly spaced Pareto fronts of quad-objective problems using PSA partitioning technique. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico, 3190–3197.
More details BibTeX
Kuchem, M., Preuss, M., & Rudolph, G. (2013). Multi-objective assessment of pre-optimized build orders exemplified for StarCraft 2. In Proceedings of the 2013 IEEE Conference on Computational Intelligence in Games, CIG 2013, Niagara Falls, ON, can, 1–8.
More details BibTeX Full text DOI
Nallaperuma, S., Wagner, M., Neumann, F., Bischl, B., Mersmann, O., & Trautmann, H. (2013). A Feature-Based Comparison of Local Search and the Christofides Algorithm for the Travelling Salesperson Problem. In Proceedings of the FOGA, Adelaide, Australia, 147–160.
More details BibTeX
Preuss, M., Kozakowski, D., Hagelbäck, J., & Trautmann, H. (2013). Reactive strategy choice in StarCraft by means of Fuzzy Control. In Proceedings of the 2013 IEEE Conference on Computational Inteligence in Games (CIG), Niagara Falls, ON, Canada, 1–8.
More details BibTeX
Preuss, M., Kozakowski, D., Hagelback, J., & Trautmann, H. (2013). Reactive strategy choice in StarCraft by means of Fuzzy Control. In Proceedings of the 2013 IEEE Conference on Computational Intelligence in Games, CIG 2013, Niagara Falls, ON, can, 1–8.
More details BibTeX Full text DOI
Preuss, M., & Wessing, S. (2013). Measuring multimodal optimization solution sets with a view to multiobjective techniques. In Proceedings of the EVOLVE, Leiden, nld, 123–137.
More details BibTeX Full text DOI
Rudolph, G., Trautmann, H., Sengupta, S., & Schütze, O. (2013). Evenly Spaced Pareto Front Approximations for Tricriteria Problems Based on Triangulation. In Purshouse, R., Fleming, P., Fonseca, C., Greco, S., & Shaw, J. (Eds.), Evolutionary Multi-Criterion Optimization — 7th International Conference, EMO 2013, Sheffield, UK, Proceedings (pp. 443–458). Lecture Notes in Computer Science: Vol. 7811. Springer.
More details BibTeX
Sosa-Hernandez, V., Schütze, O., Rudoph, G., & Trautmann, H. (2013). Directed Search Method for Indicator-based Multi-objective Evolutionary Algorithms. In Proceedings of the GECCO 2013, Amsterdam (Netherlands), 1699–1702.
More details BibTeX DOI
Stoean, C., Preuss, M., & Stoean, R. (2013). EA-based parameter tuning of multimodal optimization performance by means of different surrogate models. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO 2013, Amsterdam, nld, 1063–1070.
More details BibTeX Full text DOI
Trautmann, H., Wagne, T., & Brockhoff, D. (2013). R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection. In Proceedings of the Learning and Intelligent Optimization Conference 7, Catania, Italy, 70–74.
More details BibTeX
Wagner, T., Trautmann, H., & Brockhoff, D. (2013). Preference Articulation by Means of the R2 Indicator. In Purshouse, R. C., Fleming, P. J., Fonseca, C. M., Greco, S., & Shaw, J. (Eds.), Evolutionary Multi-Criterion Optimization — 7th International Conference, EMO 2013, Sheffield, UK, Proceedings (pp. 81–95). Lecture Notes in Computer Science: Vol. 7811. Springer.
More details BibTeX
Wessing, S., Preuss, M., & Rudolph, G. (2013). Niching by multiobjectivization with neighbor information: Trade-offs and benefits. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, CEC 2013, Cancun, mex, 103–110.
More details BibTeX Full text DOI
Grimme, C., Lepping, J., & Schwiegelshohn, U. (2013). Multi-criteria scheduling: an agent-based approach for expert knowledge integration. Journal of Scheduling, 16(4), 369–383.
More details BibTeX DOI
Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., & Neumann, F. (2013). A Novel Feature-Based Approach to Characterize Algorithm Performance for the Traveling Salesman Problem. Annals of Mathematics and Artificial Intelligence, 69, 151–182.
More details BibTeX
Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., & Neumann, F. (2013). A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Annals of Mathematics and Artificial Intelligence, 69(2), 182.
More details BibTeX DOI
Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., & Preuss, M. (2013). A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft. IEEE Trans. Comput. Intellig. and AI in Games, 5(4), 293–311.
More details BibTeX DOI
Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbäck, J., Yannakakis, G., & Grappiolo, C. (2013). Controllable procedural map generation via multiobjective evolution. Genetic Programming and Evolvable Machines, 14(2), 1–33.
More details BibTeX Full text
Trautmann, H., Wagner, T., Biermann, D., & Weihs, C. (2013). Indicator-based Selection in Evolutionary Multiobjective Optimization Algorithms Based On the Desirability Index. Journal of Multi-Criteria Decision Analysis, 20(5-6), 319–337.
More details BibTeX
Terveer, I. (2012). Fit für die Prüfung: Mathematik für Wirtschaftswissenschaften (1st ed.). Konstanz: UVK-Lucius.
More details BibTeX
Di, C. C., Agapitos, A., Cagnoni, S., Cotta, C., De, V. F., Di, C. G., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A., Farooq, M., Langdon, W., Merelo-Guervós, J.-J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A., Togelius, J., Urqhart, N., Uyar, A., & Yannakakis, G. (Eds.) (2012). Applications of Evolutionary Computation — EvoApplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC, Málaga, Spain, April 11-13, 2012, Proceedings. LNCS: Vol. 7248. Springer.
More details BibTeX Full text
Grimme, C., & Lepping, J. (2012). An Approach to Instantly Use Single-Objective Results for Multi-objective Evolutionary Combinatorial Optimization. In Hamadi, Y., & Schoenauer, M. (Eds.), Learning and Intelligent Optimization (pp. 396–401). Lecture Notes in Computer Science. Springer Berlin Heidelberg.
More details BibTeX Full text DOI
Loiacono, D., & Preuss, M. (2012). Computational intelligence in games. In Soule, T. (Ed.), Proceedings of the 14th annual conference companion on Genetic and evolutionary computation (pp. 1139–1140). ACM.
More details BibTeX Full text DOI
Bartz-Beielstein, T., Preuss, M., & Zaefferer, M. (2012). Statistical analysis of optimization algorithms with R. In Proceedings of the GECCO 2012, Philadelphia, Pennsylvania, USA, 1259–1286.
More details BibTeX Full text DOI
Bischl, B., Mersmann, O., Trautmann, H., & Preuss, M. (2012). Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In Soule, T., & Moore, J. (Eds.), Genetic and Evolutionary Computation Conference, GECCO '12, Philadelphia, PA, USA (pp. 313–320). ACM.
More details BibTeX
Bischl, B., Mersmann, O., Trautmann, H., & Preuss, M. (2012). Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In Proceedings of the 14th International Conference on Genetic and Evolutionary Computation, GECCO'12, Philadelphia, PA, usa, 313–320.
More details BibTeX Full text DOI
Brockhoff, D., Wagner, T., & Trautmann, H. (2012). On the Properties of the R2 Indicator. In Soule, T., & others, (Eds.), Proc. 14th Int'l. Genetic and Evolutionary Computation Conference (GECCO '12) (pp. 465–472). ACM.
More details BibTeX DOI
Jordan, A., Scheftelowitsch, D., Lahni, J., Hartwecker, J., Kuchem, M., Walter-Huber, M., Vortmeier, N., Delbrügger, T., Güler, Ü., Vatolkin, I., & Preuss, M. (2012). BeatTheBeat music-based procedural content generation in a mobile game. In Proceedings of the CIG 2012, Granada, Spain, 320–327.
More details BibTeX Full text DOI
Mersmann, O., Bischl, B., Bossek, J., Trautmann, H., Wagner, M., & Neumann, F. (2012). Local Search and the Traveling Salesman Problem: A Feature-Based Characterization of Problem Hardness. In Hamadi, Y., & Schoenauer, M. (Eds.), Learning and Intelligent Optimization — 6th International Conference, LION 6, Paris (pp. 115–129). Lecture Notes in Computer Science: Vol. 7219. Springer.
More details BibTeX
Preuss, M. (2012). Improved topological niching for real-valued global optimization. In Proceedings of the EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC, EvoApplications 2012, Malaga, esp, 386–395.
More details BibTeX Full text DOI
Preuss, M., Burelli, P., & Yannakakis, G. (2012). Diversified virtual camera composition. In Proceedings of the EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC, EvoApplications 2012, Malaga, esp, 265–274.
More details BibTeX Full text DOI
Preuss, M., Wagner, T., & Ginsbourger, D. (2012). High-dimensional model-based optimization based on noisy evaluations of computer games. In Proceedings of the 6th International Conference on Learning and Intelligent Optimization, LION 6, Paris, fra, 145–159.
More details BibTeX Full text DOI
Bischl, B., Mersmann, O., Trautmann, H., & Weihs, C. (2012). Resampling Methods in Model Validation. Evolutionary Computation Journal, 20(2), 249–275.
More details BibTeX DOI
Grimme, C., Lepping, J., & Papaspyrou, A. (2012). Parallel Predator-Prey Interaction for Evolutionary Multi-Objective Optimization. Natural Computing, 11(3), 519–533.
More details BibTeX DOI
Lucas, S., Mateas, M., Preuss, M., Spronck, P., & Togelius, J. (2012). Artificial and Computational Intelligence in Games (Dagstuhl Seminar 12191). Dagstuhl Reports, 2(5), 43–70.
More details BibTeX Full text DOI
Mersmann, O., Bischl, B., Bossek, J., Trautmann, H., Wagner, M., & Neumann, F. (2012). Local search and the traveling salesman problem: A feature-based characterization of problem hardness. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (LNCS), 7219 LNCS, 129.
More details BibTeX DOI
Ochoa, G., Bartz-Beielstein, T., Preuss, M., & Schoenauer, M. (2012). Editorial for the special issue on automated design and assessment of heuristic search methods. Evolutionary Computation, 20(2), 161–163.
More details BibTeX Full text DOI
Rudolph, G., Trautmann, H., & Schütze, O. (2012). Homogene Approximation der Paretofront bei mehrkriteriellen Kontrollproblemen. at-Automatisierungstechnik, 60, 610–621.
More details BibTeX DOI
Vatolkin, I., Preuß, M., Rudolph, G., Eichhoff, M., & Weihs, C. (2012). Multi-objective evolutionary feature selection for instrument recognition in polyphonic audio mixtures. Soft Computing, 16(12), 2027–2047.
More details BibTeX Full text DOI
Grimme, C. (2012). Das Räuber-Beute-Modell für die mehrkriterielle Optimierung — Analyse und Anwendung. at the Technische Universität Dortmund.
More details BibTeX
Terveer, I., & Terveer, S. (2011). Analysis-Brückenkurs für Wirtschaftswissenschaften (1st ed.). Konstanz, München: UVK-Lucius.
More details BibTeX
Di, C. C., Merelo, J., Cagnoni, S., Neri, F., Cotta, C., Preuss, M., Ebner, M., Richter, H., Ekárt, A., Togelius, J., Esparcia-Alcázar, A., & Yannakakis, G. (Eds.) (2011). Applications of Evolutionary Computation — EvoApplications 2011: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, Torino, Italy, April 27-29, 2011, Proceedings, Part I. Lecture Notes in Computer Science: Vol. 6624. Springer.
More details BibTeX Full text
Bartz-Beielstein, T., & Preuss, M. (2011). Automatic and interactive tuning of algorithms. In Proceedings of the GECCO 2011, Dublin, Ireland, 1361–1379.
More details BibTeX Full text DOI
Gerstl, K., Rudolph, G., Schütze, O., & Trautmann, H. (2011). Finding evenly spaced fronts for multiobjective control via averaging Hausdorff-measure. In Proceedings of 8th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1–6.
More details BibTeX DOI
Grimme, C., Kemmerling, M., & Lepping, J. (2011). An expertise-guided multi-criteria approach to scheduling problems. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 47–48.
More details BibTeX
Grimme, C., & Lepping, J. (2011). Combining basic heuristics for solving multi-objective scheduling problems. In IEEE Symposium on Computational Intelligence in Scheduling (SCIS), 9–16.
More details BibTeX
Grimme, C., & Lepping, J. (2011). Integrating niching into the predator-prey model using epsilon-constraints. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 109–110.
More details BibTeX
Hingston, P., & Preuss, M. (2011). Red teaming with coevolution. In Proceedings of the 2011 IEEE Congress of Evolutionary Computation, CEC 2011, New Orleans, LA, usa, 1155–1163.
More details BibTeX Full text DOI
Kemmerling, M., Ackermann, N., & Preuss, M. (2011). Nested look-ahead evolutionary algorithm based planning for a believable diplomacy bot. In Proceedings of the Evo* 2011, Turin, Italy, 83–92.
More details BibTeX Full text
Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., & Rudolph, G. (2011). Exploratory landscape analysis. In Proceedings of the 13th annual conference on Genetic and evolutionary computation, 829–836.
More details BibTeX
Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., & Rudolph, G. (2011). Exploratory landscape analysis. In Proceedings of the GECCO 2011, Dublin, Ireland, 829–836.
More details BibTeX Full text DOI
Preuss, M., Quadflieg, J., & Rudolph, G. (2011). TORCS sensor noise removal and multi-objective track selection for driving style adaptation. In Proceedings of the CIG 2011, Seoul, Korea, 337–344.
More details BibTeX Full text
Preuss, M., Stoean, C., & Stoean, R. (2011). Niching foundations: Basin identification on fixed-property generated landscapes. In Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, GECCO'11, Dublin, irl, 837–844.
More details BibTeX Full text DOI
Quadflieg, J., Preuss, M., & Rudolph, G. (2011). Driving faster than a human player. In Proceedings of the EvoApplications/Evo* 2011, Turin, Italy, 143–152.
More details BibTeX Full text
Vatolkin, I., Preuß, M., & Rudolph, G. (2011). Multi-objective feature selection in music genre and style recognition tasks. In Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, GECCO'11, Dublin, irl, 411–418.
More details BibTeX Full text DOI
Wagner, T., Trautmann, H., & Marti, L. (2011). A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms. In Takahashi, R., Deb, K., Wanner, E., & Greco, S. (Eds.), Evolutionary Multi-Criterion Optimization (pp. 16–30). Lecture Notes in Computer Science: Vol. 6576. Springer Berlin — Heidelberg.
More details BibTeX
Wessing, S., Preuss, M., & Rudolph, G. (2011). When parameter tuning actually is parameter control. In Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, GECCO'11, Dublin, irl, 821–827.
More details BibTeX Full text DOI
Fölling, A., Grimme, C., Lepping, J., & Papaspyrou, A. (2011). Connecting Community-Grids by Supporting Job Negotiation with Co-evolutionary Fuzzy-Systems. Soft Computing — A Fusion of Foundations, Methodologies and Applications, 15(12), 2375–2387.
More details BibTeX
Naujoks, B., Trautmann, H., Wessing, S., & Weihs, C. (2011). Advanced concepts for multi-objective evolutionary optimization in aircraft industry. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 225, 1081–1096.
More details BibTeX DOI
Bartz-Beielstein, T., Chiarandini, M., Paquete, L., & Preuss, M. (Eds.) (2010). Experimental methods for the analysis of optimization algorithms. Experimental Methods for the Analysis of Optimization Algorithms. Springer Berlin Heidelberg.
More details BibTeX Full text DOI
Bartz-Beielstein, T., Preuss, M., Schmitt, K., & Schwefel, H. (2010). Model Optimization with Evolutionary Algorithms. In Lucas, K., & Roosen, P. (Eds.), Emergence, Analysis and Evolution of Structures---Concepts and Strategies Across Disciplines (pp. 47–62). Understanding Complex Systems: Vol. 2010. Springer.
More details BibTeX DOI
Bartz-Beielstein, T., Lasarczyk, C., & Preuss, M. (2010). The sequential parameter optimization toolbox. In Bartz-Beielstein, T., Thomas, B.-B., Chiarandini, M., Paquete, L., & Preuss, M. (Eds.), Experimental Methods for the Analysis of Optimization Algorithms (pp. 337–362). Springer Berlin Heidelberg.
More details BibTeX Full text DOI
Bartz-Beielstein, T., & Preuss, M. (2010). The future of experimental research. In Bartz-Beielstein, T., Chiarandini, M., Paquete, L., & Preuss, M. (Eds.), Experimental Methods for the Analysis of Optimization Algorithms (pp. 17–49). Springer Berlin Heidelberg.
More details BibTeX Full text DOI
Bartz-Beielstein, T., & Preuss, M. (2010). Tuning and experimental analysis in EC: What we still have wrong. In Proceedings of the GECCO 2010, Portland, Oregon, USA, 2625–2646.
More details BibTeX Full text DOI
Beume, N., Naujoks, B., Preuss, M., Rudolph, G., & Wagner, T. (2010). Effects of 1-greedy S-metric-selection on innumerably large Pareto fronts. In Proceedings of the EMO 2009, Nantes, France, 21–35.
More details BibTeX Full text
Bischl, B., Mersmann, O., & Trautmann, H. (2010). Resampling Methods in Model Validation. In Bartz-Beielstein, T., Chiarandini, M., Paquete, L., & Preuss, M. (Eds.), Proceedings of the Workshop on Experimental Methods for the Assessment of Computational Systems (WEMACS 2010), Algorithm Engineering Report TR10-2-007. Department of Computer Science, TU Dortmund University.
More details BibTeX
Bischl, B., Vatolkin, I., & Preuss, M. (2010). Selecting small audio feature sets in music classification by means of asymmetric mutation. In Proceedings of the PPSN 2010, Krakow, Poland, 314–323.
More details BibTeX Full text
Ding, J., Wessing, S., Trautmann, H., Mehnen, J., & Naujoks, B. (2010). Sequential Parameter Optimisation for Multi-Objective Evolutionary Optimisation of Additive Layer Manufacturing. In Teti, R. (Ed.), Proceedings of the 7th CIRP International Seminar on Intelligent Computation in Manufacturing Engineering (CIRP ICME '10). Capri, Italy: Copyright C.O.C. Com. org. Conv.
More details BibTeX
Fölling, A., Grimme, C., Lepping, J., & Papaspyrou, A. (2010). The Gain of Resource Delegation in Distributed Computing Environments. In Schwiegelshohn, U., & Frachtenberg, E. (Eds.), Proceedings of the 15th Workshop on Job Scheduling Strategies for Parallel Processing (pp. 77–92). Lecture Notes in Computer Science. Atlanta (GA), United States: Springer.
More details BibTeX
Grimme, C., Lepping, J., Moreno, P. J., & Papaspyrou, A. (2010). Applying P2P Strategies to Scheduling in Decentralized Grid Computing Infrastructures. In Proceedings of the Sixth International Workshop on Scheduling and Resource Management for Parallel and Distributed Systems, 295–302.
More details BibTeX
Hingston, P., Preuss, M., & Spierling, D. (2010). RedTNet: A network model for strategy games. In Proceedings of the CEC 2010, Barcelona, Spain.
More details BibTeX Full text
Kemmerling, M., & Preuss, M. (2010). Automatic adaptation to generated content via car setup optimization in TORCS. In Proceedings of the CIG 2010, Copenhagen, Denmark, 131–138.
More details BibTeX Full text DOI
Mersmann, O., Preuss, M., & Trautmann, H. (2010). Benchmarking Evolutionary Algorithms: Towards Exploratory Landscape Analysis. In Schaefer, R., Cotta, C., Kolodziej, J., & Rudolph, G. (Eds.), 11th International Conference on Parallel Problem Solving from Nature — PPSN XI, Proceedings, Part I (pp. 73–82). Lecture Notes in Computer Science: Vol. 6238. Springer.
More details BibTeX
Mersmann, O., Preuss, M., & Trautmann, H. (2010). Benchmarking evolutionary algorithms: Towards exploratory landscape analysis. In Proceedings of the PPSN 2010, Krakow, Poland, 73–82.
More details BibTeX Full text
Mersmann, O., Trautmann, H., Naujoks, B., & Weihs, C. (2010). On the Distribution of EMOA Hypervolumes. In Blum, C., & Battiti, R. (Eds.), Learning and Intelligent Optimization, 4th International Conference, LION 4, Venice, Italy (pp. 333–337). Lecture Notes in Computer Science: Vol. 6073. Springer.
More details BibTeX
Mersmann, O., Trautmann, H., Naujoks, B., & Weihs, C. (2010). Benchmarking evolutionary multiobjective optimization algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain, 1–8.
More details BibTeX
Mostaghim, S., Trautmann, H., & Mersmann, O. (2010). Preference-Based Multi-Objective Particle Swarm Optimization Using Desirabilities. In Schaefer, R., Cotta, C., Kolodziej, J., & Rudolph, G. (Eds.), 11th International Conference on Parallel Problem Solving from Nature — PPSN XI, Proceedings, Part II (pp. 101–110). Lecture Notes in Computer Science: Vol. 6239. Springer.
More details BibTeX
Preuss, M. (2010). Niching the CMA-ES via nearest-better clustering. In Proceedings of the GECCO 2010, Portland, OR, USA, 1711–1717.
More details BibTeX Full text DOI
Preuss, M., Kausch, C., Bouvy, C., & Henrich, F. (2010). Decision space diversity can be essential for solving multiobjective real-world problems. In Proceedings of the MCDM 2008, Auckland, New Zealand, 367–377.
More details BibTeX Full text DOI
Preuss, M., Rudolph, G., & Wessing, S. (2010). Tuning optimization algorithms for real-world problems by means of surrogate modeling. In Proceedings of the GECCO 2010, Portland, Oregon, USA, 401–408.
More details BibTeX Full text DOI
Quadflieg, J., Preuss, M., Kramer, O., & Rudolph, G. (2010). Learning the track and planning ahead in a car racing controller. In Proceedings of the CIG 2010, Copenhagen, Denmark, 395–402.
More details BibTeX Full text DOI
Shir, O., Preuss, M., Naujoks, B., & Emmerich, M. (2010). Enhancing decision space diversity in evolutionary multiobjective algorithms. In Proceedings of the EMO 2009, Nantes, France, 95–109.
More details BibTeX Full text
Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbäck, J., & Yannakakis, G. (2010). Multiobjective exploration of the StarCraft map space. In Proceedings of the CIG 2010, Copenhagen, Denmark, 265–272.
More details BibTeX Full text DOI
Togelius, J., Preuss, M., & Yannakakis, G. (2010). Towards multiobjective procedural map generation. In Proceedings of the FDG 2010, Monterey, California, USA.
More details BibTeX Full text DOI
Voss, T., Trautmann, H., & Igel, C. (2010). New Uncertainty Handling Strategies in Multi-objective Evolutionary Optimization. In Schaefer, R., Cotta, C., Kolodziej, J., & Rudolph, G. (Eds.), 11th International Conference on Parallel Problem Solving from Nature — PPSN XI, Proceedings, Part II (pp. 260–269). Lecture Notes in Computer Science: Vol. 6239. Springer.
More details BibTeX
Wagner, T., & Trautmann, H. (2010). Online convergence detection for evolutionary multi-objective algorithms revisited. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain, 1–8.
More details BibTeX
Azene, Y., Roy, R., Farrugia, D., Onisa, C., Mehnen, J., & Trautmann, H. (2010). Work roll cooling system design optimisation in presence of uncertainty and constrains. CIRP Journal of Manufacturing Science and Technology, 2, 290–298.
More details BibTeX DOI
Fölling, A., Grimme, C., Lepping, J., & Papaspyrou, A. (2010). Robust Load Delegation in Service Grid Environments. IEEE Transactions on Parallel and Distributed Systems, 21(9), 1304–1316.
More details BibTeX Full text DOI
Loiacono, D., Lanzi, P., Togelius, J., Onieva, E., Pelta, D., Butz, M., Lönneker, T., Cardamone, L., Perez, D., Sáez, Y., Preuss, M., & Quadflieg, J. (2010). The 2009 simulated car racing championship. IEEE Transactions on Computational Intelligence and AI in Games, 2(2), 131–147.
More details BibTeX Full text DOI
Stoean, C., Preuss, M., Stoean, R., & Dumitrescu, D. (2010). Multimodal optimization by means of a topological species conservation algorithm. IEEE Transactions on Evolutionary Computation, 14(6), 842–864.
More details BibTeX Full text DOI
Wagner, T., & Trautmann, H. (2010). Integration of Preferences in Hypervolume-Based Multiobjective Evolutionary Algorithms by Means of Desirability Functions. IEEE Transactions on Evolutionary Computation, 14(5), 688–701.
More details BibTeX DOI
Giacobini, M., Brabazon, A., Cagnoni, S., Caro, G., Ekárt, A., Esparcia-Alćazar, A., Farooq, M., Fink, A., Machado, P., McCormack, J., O'Neill, M., Neri, F., Preuss, M., Rothlauf, F., Tarantino, E., & Yang, S. (Eds.) (2009). Applications of Evolutionary Computing, EvoWorkshops 2009: EvoCOMNET, EvoENVIRONMENT, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, EvoNUM, EvoSTOC, EvoTRANSLOG. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. null. unbekannt — n.a. — unknown.
More details BibTeX Full text
Shir, O., Preuss, M., Naujoks, B., & Emmerich, M. (2009). Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms. In Ehrgott, M., Fonseca, C., Gandibleux, X., Hao, J., & Sevaux, M. (Eds.), Evolutionary Multi-Criterion Optimization (pp. 95–109). Lecture Notes in Computer Science: Vol. 5467. Springer.
More details BibTeX Full text DOI
Stoean, R., Preuss, M., Stoean, C., El-Darzi, E., & Dumitrescu, D. (2009). An evolutionary approximation for the coefficients of decision functions within a support vector machine learning strategy. In Hassanien, A. E., Abraham, A., Vasilakos, A. V., & Pedrycz, W. (Eds.), Foundations of Computational Intelligence, Volume 1 (pp. 83–114).
More details BibTeX Full text DOI
Fölling, A., Grimme, C., Lepping, J., & Papaspyrou, A. (2009). Decentralized Grid Scheduling with Evolutionary Fuzzy Systems. In Frachtenberg, E., & Schwiegelshohn, U. (Eds.), Proceedings of the 14th Job Scheduling Strategies for Parallel Processing (pp. 16–36). Lecture Notes in Computer Science: Vol. 5798. Springer.
More details BibTeX
Fölling, A., Grimme, C., Lepping, J., & Papaspyrou, A. (2009). Co-evolving Fuzzy Rule Sets for Job Exchange in Computational Grids. In Proceedings of the International Conference on Fuzzy Systems, Jeju Island, Korea, 1683–1688.
More details BibTeX
Grimme, C., Lepping, J., & Papaspyrou, A. (2009). Adapting to the Habitat: On the Integration of Local Search into the Predator-Prey Model. In Proceedings of the Fifth International Conference on Evolutionary Multi-Criterion Optimization (EMO), 510–524.
More details BibTeX
Kemmerling, M., Ackermann, N., Beume, N., Preuss, M., Uellenbeck, S., & Walz, W. (2009). Is human-like and well playing contradictory for diplomacy hots?. In Proceedings of the CIG 2009, Milano, Italy, 209–216.
More details BibTeX Full text DOI
Naujoks, B., & Trautmann, H. (2009). Online Convergence Detection for Multiobjective Aerodynamic Applications. In Tyrrell, A. (Ed.), Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2009, Trondheim, Norway (pp. 332–339). IEEE Press.
More details BibTeX
Preuss, M. (2009). Adaptability of algorithms for real-valued optimization. In Proceedings of the EvoApplications/Evo* 2009, Tübingen, Germany, 665–674.
More details BibTeX Full text
Rudolph, G., & Preuss, M. (2009). A multiobjective approach for finding equivalent inverse images of pareto-optimal objective vectors. In Proceedings of the MCDM 2009, Orlando, FL, USA, 74–79.
More details BibTeX Full text DOI
Rudolph, G., Preuss, M., & Quadflieg, J. (2009). Double-layered Surrogate Modeling for Tuning Metaheuristics. In Proceedings of the ENBIS/EMSE Conference "Design and Analysis of Computer Experiments", Saint-Etienne (France).
More details BibTeX
T., W. H. T., & Naujoks, B. (2009). OCD: Online Convergence Detection for Evolutionary Multi-Objective Algorithms Based on Statistical Testing. In Fonseca, C., & Gandibleux, X. (Eds.), Evolutionary Multi-Criterion Optimization (EMO 2009), Lecture Notes in Computer Science (LNCS) 5467 (pp. 198–215). Springer, Berlin.
More details BibTeX
Trautmann, H., Mehnen, J., & Naujoks, B. (2009). Pareto-Dominance in Noisy Environments. In Tyrrell, A. (Ed.), Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2009, Trondheim, Norway (pp. 3119–3126). IEEE Press.
More details BibTeX
Fölling, A., Grimme, C., Lepping, J., Papaspyrou, A., & Schwiegelshohn, U. (2009). Competitive Co-evolutionary Learning of Fuzzy Systems for Job Exchange in Computational Grids. Evolutionary Computation, 17(4), 545–560.
More details BibTeX DOI
Grimme, C., & Papaspyrou, A. (2009). Cooperative Negotiation and Scheduling of Scientific Workflows in the Collaborative Climate Community Data and Processing Grid. Future Generation Computer Systems, 25, 301–307.
More details BibTeX DOI
Plantikow, S., Peter, K., Högqvist, M., Grimme, C., & Papaspyrou, A. (2009). Generalizing the Data Management of Three Community Grids. Future Generation Computer Systems, 25, 281–289.
More details BibTeX DOI
Stoean, C., Preuss, M., & Stoean, R. (2009). Species separation by a clustering mean towards multimodal function optimization. An. Univ. Craiova, Ser. Mat. Inf. 36(2), 53–62.
More details BibTeX
Stoean, R., Preuss, M., Stoean, C., El-Darzi, E., & Dumitrescu, D. (2009). Support vector machine learning with an evolutionary engine. Journal of the Operational Research Society (JORS), 60(8), 1116–1122.
More details BibTeX Full text DOI
Trautmann, H., & Mehnen, J. (2009). Statistical Methods for Improving Multi-objective Evolutionary Optimisation. International Journal of Computational Intelligence Research, 5(2), 72–78.
More details BibTeX DOI
Trautmann, H., & Mehnen, J. (2009). Preference-Based Pareto-Optimization in Certain and Noisy Environments. Engineering Optimization, 41, 23–38.
More details BibTeX DOI
Trautmann, H., Wagner, T., Naujoks, B., Preuss, M., & Mehnen, J. (2009). Statistical Methods for Convergence Detection of Multi-Objective Evolutionary Algorithms. Evolutionary Computation, Special Issue: Twelve Years of EC Research in Dortmund, 17(4), 493–509.
More details BibTeX
Bartz-Beielstein, T., & Preuss, M. (2008). Experimental research in evolutionary computation. In Proceedings of the GECCO 2008, Atlanta, GA, USA, 2517–2534.
More details BibTeX Full text DOI
Beume, N., Danielsiek, H., Eichhorn, C., Naujoks, B., Preuss, M., Stiller, K., & Wessing, S. (2008). Measuring flow as concept for detecting game fun in the pac-man game. In Proceedings of the CEC 2008, Hongkong, China, 3448–3455.
More details BibTeX Full text
Beume, N., Hein, T., Naujoks, B., Neugebauer, G., Piatkowski, N., Preuss, M., Stüer, R., & Thom, A. (2008). To Model or Not to Model: Controlling Pac-Man Ghosts Without Incorporating Global Knowledge. In Proceedings of the 2008 Congress on Evolutionary Computation (CEC'08), Hong Kong, China, 3464–3471.
More details BibTeX DOI
Beume, N., Hein, T., Naujoks, B., Piatkowski, N., Preuss, M., & Wessing, S. (2008). Intelligent anti-grouping in real-time strategy games. In Proceedings of the CIG 2008, Perth, Australia, 63–70.
More details BibTeX Full text DOI
Bouvy, C., Kausch, C., Preuss, M., & Henrich, F. (2008). On the potential of multi-objective optimisation in the design of sustainable energy systems. In Ehrgott, M., & others, (Eds.), MCDM for Sustainable Energy and Transportation Systems. Springer.
More details BibTeX
Danielsiek, H., Stüer, R., Thom, A., Beume, N., Naujoks, B., & Preuss, M. (2008). Intelligent moving of groups in real-time strategy games. In Proceedings of the CIG 2008, Perth, Australia, 71–78.
More details BibTeX Full text DOI
Grimme, C., Lepping, J., & Papaspyrou, A. (2008). Prospects of Collaboration between Compute Providers by means of Job Interchange. In Frachtenberg, E., & Schwiegelshohn, U. (Eds.), Proceedings of the 13th Job Scheduling Strategies for Parallel Processing (pp. 132–151). Lecture Notes in Computer Science: Vol. 4942. Springer.
More details BibTeX
Grimme, C., Lepping, J., & Papaspyrou, A. (2008). Benefits of Job Exchange Between Autonomous Sites in Decentralized Computational Grids. In Priol, T., Lefevre, L., & Buyya, R. (Eds.), Proccedings of the 8th IEEE International Symposium on Cluster Computing and the Grid (CCGrid) (pp. 25–32). IEEE Computer Society.
More details BibTeX
Grimme, C., Lepping, J., & Papaspyrou, A. (2008). The Parallel Predator-Prey Model: A Step Towards Practical Application. In Rudolph, G., & others, (Eds.), Proceedings of the 10th International Conference on Parallel Problem Solving From Nature (PPSN X) (pp. 681–690). Lecture Notes in Computer Science: Vol. 5199. Springer.
More details BibTeX
Grimme, C., Lepping, J., & Papaspyrou, A. (2008). Discovering Performance Bounds for Grid Scheduling by using Evolutionary Multiobjective Optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 1491–1498.
More details BibTeX
Jägersküpper, J., & Preuss, M. (2008). Aiming for a theoretically tractable CSA variant by means of empirical investigations. In Proceedings of the GECCO 2008, Atlanta, GA, USA, 503–510.
More details BibTeX Full text DOI
Jägersküpper, J., & Preuss, M. (2008). Empirical investigation of simplified step-size control in metaheuristics with a view to theory. In Proceedings of the WEA 2008, Provincetown, MA, USA, 263–274.
More details BibTeX Full text
Kausch, C., Preuss, M., & Henrich, F. (2008). Multi-criteria Pareto optimised planning method for distillation plants with non-sharp splits. In Proceedings of the 21st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2008, pol, 773–780.
More details BibTeX Full text
Mehnen, J., & Trautmann, H. (2008). Robust Multi-objective Optimisation of Weld Bead Geometry for Additive Manufacturing. In Teti, R. (Ed.), Proceedings of the 6th CIRP International Seminar on Intelligent Computation in Manufacturing Engineering (CIRP ICME '08). Naples, Italy: Copyright C.O.C. Com. org. Conv.
More details BibTeX
Rudolph, G., & Preuss, M. (2008). Ein Evolutionsverfahren zur Approximation äquivalenter Urbilder von Pareto-optimalen Zielvektoren. In Mikut, R., & Reischl, M. (Eds.), Proc. 18th GMA Workshop Computational Intelligence (pp. 30–39). Universitätsverlag, Karlsruhe.
More details BibTeX
Stoean, C., Preuss, M., Stoean, R., & Dumitrescu, D. (2008). EA-powered basin number estimation by means of preservation and exploration. In Proceedings of the PPSN 2008, Dortmund, Germany, 569–578.
More details BibTeX Full text
Stoean, C., Stoean, R., & Preuss, M. (2008). Approximating the Number of Attraction Basins of a Function by Means of Clustering and Evolutionary Algorithms. In Proceedings of the AIDC 2008, Craiova, Romania, 171–180.
More details BibTeX
Trautmann, H., Ligges, U., Mehnen, J., & Preuss, M. (2008). A Convergence Criterion for Multiobjective Evolutionary Algorithms Based on Systematic Statistical Testing. In Rudolph, G., & others, (Eds.), Parallel Problem Solving from Nature (PPSN) (pp. 825–836). Springer, Berlin.
More details BibTeX
Trautmann, H., Ligges, U., Mehnen, J., & Preuss, M. (2008). A convergence criterion for multiobjective evolutionary algorithms based on systematic statistical testing. In Proceedings of the PPSN 2008, Dortmund, Germany, 825–836.
More details BibTeX Full text
Henrich, F., Bouvy, C., Kausch, C., Lucas, K., Preuß, M., Rudolph, G., & Roosen, P. (2008). Economic optimization of non-sharp separation sequences by means of evolutionary algorithms. Computers and Chemical Engineering, 32(7), 1411–1432.
More details BibTeX Full text DOI
Preuss, M., & Beume, N. (2008). Learning from failures in evolutionary computation — GECCO-2009: events reports. SIGEVOlution, 3(4), 16–18.
More details BibTeX Full text DOI
Preuss, M., & Bartz-Beielstein, T. (2007). Sequential parameter optimization applied to self-adaptation for binary-coded evolutionary algorithms. In Lobo, F., Lima, C., & Michalewicz, Z. (Eds.), Parameter Setting in Evolutionary Algorithms (pp. 91–119). Studies in Computational Intelligence: Vol. 54/2007.
More details BibTeX Full text DOI
Bartz-Beielstein, T., & Preuss, M. (2007). Experimental research in evolutionary computation. In Proceedings of the GECCO 2007, London, UK, 3001–3020.
More details BibTeX Full text DOI
Chimani, M., Kandyba, M., & Preuss, M. (2007). Hybrid numerical optimization for combinatorial network problems. In Proceedings of the Hybrid Metaheuristics 2007, Dortmund, Germany, 185–200.
More details BibTeX Full text
Freitag, S., Grimme, C., Papaspyrou, A., & Schley, L. (2007). On the Applicability of OGSA-BES to D-Grid Community Scheduling Systems. In Proceedings of the German E-Science Conference (GES).
More details BibTeX
Grimme, C., Langhammer, T., Papaspyrou, A., & Schintke, F. (2007). Negotiation-based Choreography of Data-intensive Applications in the C3Grid Project. In Proceedings of the German E-Science Conference (GES).
More details BibTeX
Grimme, C., & Lepping, J. (2007). Designing Multi-Objective Variation Operators Using a Predator-Prey Approach. In Proceedings of the Fourth International Conference on Evolutionary Multi-Criterion Optimization, 21–35.
More details BibTeX
Grimme, C., Lepping, J., & Papaspyrou, A. (2007). Exploring the Behavior of Building Blocks for Multi-Objective Variation Operator Design using Predator-Prey Dynamics. In Thierens, D., & others, (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (pp. 805–812). London: ACM Press.
More details BibTeX
Grimme, C., Lepping, J., & Papaspyrou, A. (2007). Identifying Job Migration Characteristics in Decentralized Grid Scheduling Scenarios. In Zheng, S. (Ed.), Proceedings of the 19th International Conference on Parallel and Distributed Computing and Systems (PDCS) (pp. 124–129). Cambridge (MA), USA: ACTA Press.
More details BibTeX
Mehnen, J., Trautmann, H., & Tiwari, A. (2007). Introducing User Preference Using Desirability Functions in Multi-Objective Evolutionary Optimisation of Noisy Processes. In CEC 2007, IEEE Congress on Evolutionary Computation, 2687–2694.
More details BibTeX
Preuss, M., & Naujoks, B. (2007). Evolutionäre mehrkriterielle Optimierung bei Anwendungen mit nichtzusammenhängenden Pareto-Mengen. In Mikut, R., & Reischl, M. (Eds.), Proc. 17th Workshop Computational Intelligence (pp. 165–176). Universitätsverlag, Karlsruhe.
More details BibTeX
Preuss, M., Rudolph, G., & Tumakaka, F. (2007). Solving multimodal problems via multiobjective techniques with application to phase equilibrium detection. In Proceedings of the CEC 2007, Singapore, 2703–2710.
More details BibTeX Full text DOI
Rudolph, G., Naujoks, B., & Preuss, M. (2007). Capabilities of EMOA to detect and preserve equivalent pareto subsets. In Proceedings of the EMO 2007, Matsushima, Japan, 36–50.
More details BibTeX Full text
Rudolph, G., & Preuss, M. (2007). Ein mehrkriterielles Evolutionsverfahren zur Bestimmung des Phasengleichgewichts von gemischten Flüssigkeiten. In Mikut, R., & Reischl, M. (Eds.), Proc. 17th Workshop Computational Intelligence (pp. 177–185). Universitätsverlag, Karlsruhe.
More details BibTeX
Stoean, C., Dumitrescu, D., Preuss, M., & Stoean, R. (2007). Cooperative evolution of rules for classification. In Proceedings of the SYNASC 2006, Timisoara, Romania, 317–322.
More details BibTeX Full text
Stoean, C., Stoean, R., Preuss, M., & Dumitrescu, D. (2007). Competitive Coevolution for Classification. In Proceedings of the 7th International Conference on Artificial Intelligence and Digital Communications, Craiova, Romania, 28–39.
More details BibTeX
Stoean, C., Preuss, M., Stoean, R., & Dumitrescu, D. (2007). Disburdening the species conservation evolutionary algorithm of arguing with radii. In Proceedings of the 9th Annual Genetic and Evolutionary Computation Conference, GECCO 2007, London, gbr, 1420–1427.
More details BibTeX Full text DOI
Stoean, R., Preuss, M., Dumitrescu, D., & Stoean, C. (2007). Evolutionary support vector regression machines. In Proceedings of the SYNASC 2006, Timisoara, Romania, 330–335.
More details BibTeX Full text
Stoean, R., Preuss, M., Stoean, C., & Dumitrescu, D. (2007). Concerning the potential of evolutionary support vector machines. In Proceedings of the CEC 2007, Singapore, 1436–1443.
More details BibTeX Full text DOI
Weihs, C., & Trautmann, H. (2007). Parallel Universes: Multi-Criteria Optimization. In Berthold, M., Morik, K., & Siebes, A. (Eds.), Dagstuhl Seminar Proceedings 07181, Parallel Universes and Local Patterns (pp. ). Schloss Dagstuhl, Germany: Internationales Begegnungs- und Forschungszentrum f�r Informatik (IBFI).
More details BibTeX
Stoean, C., Dumitrescu, D., Preuss, M., & Stoean, R. (2007). Cooperative coevolution as a paradigm for classification. Journal of Universal Computer Science, 13(7), 1097–1108.
More details BibTeX Full text
Stoean, R., Dumitrescu, D., Preuss, M., & Stoean, C. (2007). Evolutionary support vector machines for classification with multiple outcomes. Journal of Universal Computer Science, 13(7), 1109–1121.
More details BibTeX Full text
Stoean, R., Stoean, C., Preuss, M., & Dumitrescu, D. (2007). Evolutionary Detection of Separating Hyperplanes in E-mail Classification. Acta Cibiniensis, LV, 41–46.
More details BibTeX
Chiarandini, M., Paquete, L., Preuss, M., & Ridge, E. (2007). Experiments on metaheuristics: Methodological overview and open issues. In The Danish Mathematical Society: Vol. DMF-2007-03-003.
More details BibTeX
Grimme, C., Lepping, J., Papaspyrou, A., Wieder, P., Yahyapour, R., Oleksiak, A., Wäldrich, O., & Ziegler, W. (2007). Towards a standards-based Grid Scheduling Architecture.
More details BibTeX
Huang, V., Qin, A., Deb, K., Zitzler, E., Suganthan, P., Liang, J., Preuss, M., & Huband, S. (2007). Problem Definitions for Performance Assessment of Multi-objective Optimization Algorithms. In Nanyang Technological University, Singapore.
More details BibTeX
Preuss, M. (2007). Reporting on Experiments in Evolutionary Computation. In University of Dortmund, SFB 531: Vol. CI-221/07.
More details BibTeX
Paechter, B., Willies, J., & Preuss, M. (2006). Prologue. In Bartz-Beielstein, T., Jankord, G., Naujoks, B., Rudolph, G., & Schmitt, K. (Eds.), Hans-Paul Schwefel — Festschrift (pp. 83–84). University of Dortmund, Chair of Systems Analysis.
More details BibTeX
Bartz-Beielstein, T., & Preuss, M. (2006). Considerations of Budget Allocation for Sequential Parameter Optimization (SPO). In Proceedings of the PPSN 2006 (EMAA Workshop), Reykjavik, Iceland, 35–40.
More details BibTeX
Bartz-Beielstein, T., & Preuss, M. (2006). Moderne Methoden zur experimentellen Analyse evolutionärer Verfahren. In Mikut, R., & Reischl, M. (Eds.), Proc. 16th Workshop Computational Intelligence (pp. 25–32). Universitätsverlag, Karlsruhe.
More details BibTeX
Bartz-Beielstein, T., Preuss, M., & Rudolph, G. (2006). Investigation of one-go evolution strategy/quasi-newton hybridizations. In Proceedings of the Hybrid Metaheuristics 2006, Gran Canaria, Spain, 178–191.
More details BibTeX Full text
Giacobini, M., Preuss, M., & Tomassini, M. (2006). Effects of scale-free and small-world topologies on binary coded self-adaptive CEA. In Proceedings of the EvoCop/Evo* 2006, Budapest, Hungary, 86–98.
More details BibTeX Full text
Grimme, C., & Schmitt, K. (2006). Inside a Predator-Prey Model for Multi-Objective Optimization: A Second Study. In H., G. B., & others, (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (pp. 707–714). New York: ACM Press.
More details BibTeX
Mehnen, J., & Trautmann, H. (2006). Integration of Expert's Preferences in Pareto Optimization by Desirability Function Techniques. In Teti, R. (Ed.), CIRP ICME '06) — Proceedings of the 5th CIRP International Seminar on Intelligent Computation in Manufacturing Engineering (pp. 293–298). Ischia, Italy: C.O.C. Com. org. Conv. CIRP ICME '06.
More details BibTeX
Preuss, M. (2006). Niching prospects. In Proceedings of the BIOMA 2006, Ljubljana, Slovenia, 25–34.
More details BibTeX Full text
Preuss, M., Naujoks, B., & Rudolph, G. (2006). Pareto set and EMOA behavior for simple multimodal multiobjective functions. In Proceedings of the PPSN 2006, Reykjavik, Iceland, 513–522.
More details BibTeX Full text
Stoean, C., Dumitrescu, D., Preuss, M., & Stoean, R. (2006). Cooperative Coevolution for Classification. In Proceedings of the Bio-Inspired Computing: Theory and Applications (BIC-TA 2006), Wuhan, China, 289–298.
More details BibTeX
Stoean, C., Stoean, R., Preuss, M., & Dumitrescu, D. (2006). Spam Filtering by Means of Cooperative Coevolution. In Teodorescu, H. (Ed.), 4th European Conference on Intelligent Systems and Technologies, ECIT 2006 (pp. 157–159). Performantica Press.
More details BibTeX
Stoean, R., Dumitrescu, D., Preuss, M., & Stoean, C. (2006). Different Techniques of Multi-class Evolutionary Support Vector Machines. In Proceedings of the Bio-Inspired Computing: Theory and Applications (BIC-TA 2006), Wuhan, China, 299–306.
More details BibTeX
Stoean, R., Stoean, C., Preuss, M., & Dumitrescu, D. (2006). Evolutionary Support Vector Machines for Spam Filtering. In Proceedings of the RoEduNet IEEE International Conference, Iasi, Romania, 261–266.
More details BibTeX
Stoean, R., Stoean, C., Preuss, M., El-Darzi, E., & Dumitrescu, D. (2006). Evolutionary support vector machines for diabetes mellitus diagnosis. In Proceedings of the IEEE Intelligent Systems 2006, London, UK, 182–187.
More details BibTeX Full text
Stoean, R., Stoean, C., Preuss, M., & Dumitrescu, D. (2006). Forecasting Soybean Diseases from Symptoms by Means of Evolutionary Support Vector Machines. Phytologia Balcanica, 12(3), 345–350.
More details BibTeX
Stoean, R., Stoean, C., Preuss, M., & Dumitrescu, D. (2006). Evolutionary Multi-class Support Vector Machines for Classification. International Journal of Computers, Communications & Control (IJCCC), 1(Supplementary Issue, International Conference on Computers and Communications — ICCC 2006), 423–428.
More details BibTeX
Trautmann, H., & Weihs, C. (2006). On the Distribution of the Desirability Index using Harrington's Desirability Function. Metrika, 63(2), 207–213.
More details BibTeX DOI
Bartz--Beielstein, T., Preuss, M., & Markon, S. (2005). Validation and Optimization of an Elevator Simulation Model with Modern Search Heuristics. In Ibaraki, T., Nonobe, K., & Yagiura, M. (Eds.), Metaheuristics — Progress as Real Problem Solvers (pp. 109–128). Kluwer Academic Publishers.
More details BibTeX DOI
Bartz-Beielstein, T., Lasarczyk, C., & Preuss, M. (2005). Sequential parameter optimization. In Proceedings of the CEC 2005, Edinburgh, UK, 773–780.
More details BibTeX Full text DOI
Preuss, M., Schönemann, L., & Emmerich, M. (2005). Counteracting genetic drift and disruptive recombination in (μ, +λ)-EA on multimodal fitness landscapes. In Proceedings of the GECCO 2005, Washington, DC, USA, 865–872.
More details BibTeX Full text DOI
Stoean, C., Preuss, M., Gorunescu, R., & Dumitrescu, D. (2005). Elitist generational genetic chromodynamics — A new radii-based evolutionary algorithm for multimodal optimization. In Proceedings of the CEC 2005, Edinburgh, UK, 1839–1846.
More details BibTeX Full text DOI
Stoean, C., Stoean, R., Preuss, M., & Dumitrescu, D. (2005). Diabetes diagnosis through the means of a multimodal evolutionary algorithm. In B.~McKay, o. (Ed.), Proc.~1st East European Conference on Health Care Modelling and Computation (HCMC'2005), Craiova, Romania (pp. 277–289). Craiova: Medical University Press.
More details BibTeX
Grimme, C. (2005). Räuber-Beute-Systeme für die mehrkriterielle Optimierung.
More details BibTeX
Preuss, M., & Lasarczyk, C. (2004). On the importance of information speed in structured populations. In Proceedings of the PPSN 2004, Birmingham, UK, 91–100.
More details BibTeX Full text
Schönemann, L., Emmerich, M., & Preuss, M. (2004). On the extinction of sub-populations on multimodal landscapes. In Proceedings of the BIOMA 2004, Ljubljana, Slovenia, 31–40.
More details BibTeX Full text
Stoean, C., Gorunescu, R., Preuss, M., & Dumitrescu, D. (2004). Evolutionary Detection of Rules for Text Categorization. Application to Spam Filtering. In Teodorescu, H. (Ed.), Intelligent Systems — Fuzzy Systems, Neural Networks, Genetic Algorithms, Heuristics and Nonlinear Systems — Selected papers of the Third European Conference on Intelligent Systems and Technologies — ECIT'2004 (pp. 87–95). Iasi, Romania: Performantica Press.
More details BibTeX
Stoean, C., Gorunescu, R., Preuss, M., & Dumitrescu, D. (2004). An Evolutionary Learning Spam Filter System. In Petcu, D., Zaharie, D., Negru, V., & Jebelean, T. (Eds.), Proceedings 6th International Symposium, SYNASC04 — Symbolic and Numeric Algorithms for Scientific Computing (pp. 512–522). Timisoara, Romania: Mirton Publishing House.
More details BibTeX
Schönemann, L., Emmerich, M., & Preuss, M. (2004). On the extinction of evolutionary algorithm subpopulations on multimodal landscapes. Informatica (Sl), 28(4), 345–351.
More details BibTeX Full text
Stoean, C., Gorunescu, R., Preuss, M., & Dumitrescu, D. (2004). An Evolutionary Learning Classifier System Applied to Text Categorization. Annal of West University of Timisoara, Mathematics and Computer Science Series, XLII(special issue 1), 265–278.
More details BibTeX
Trautmann, H. (2004). Qualitätskontrolle in der Industrie anhand von Kontrollkarten für Wünschbarkeitsindizes — Anwendungsfeld Lagerverwaltung.
More details BibTeX Full text
Beielstein, T., Markon, S., & Preuss, M. (2003). A parallel approach to elevator optimization based on soft computing. In Proceedings of the 5th Metaheuristics Int'l Conf. (MIC'03), Kyoto, Japan, 07/1-07/11 (CD-ROM).
More details BibTeX
Beielstein, T., Markon, S., & Preuss, M. (2003). Algorithm based validation of a simplified elevator group controller model. In Proceedings of the 5th Metaheuristics Int'l Conf.~(MIC'03), Kyoto, Japan, 06/1-06/13 (CD-ROM).
More details BibTeX
Arenas, M., Collet, P., Eiben, A., Jelasity, M., Merelo, J., Paechter, B., Preuss, M., & Schoenauer, M. (2002). A framework for distributed evolutionary algorithms. In J.~J.~Merelo~Guervós, P., H.--G.~Beyer, J.--V., & H.--P.~Schwefel, (Eds.), Parallel Problem Solving from Nature — PPSN VII, Proc.~Seventh Intl. Conf. (pp. 665–675). Lecture Notes in Computer Science: Vol. 2439. Springer.
More details BibTeX DOI
Jelasity, M., & Preuss, M. (2002). On obtaining global information in a peer-to-peer fully distributed environment. In B.~Monien, R. (Ed.), Euro-Par 2002 Parallel Processing, Proc.~Eighth Int'l Conf., Paderborn, August~2002 (pp. 573–577). Lecture Notes in Computer Science: Vol. 2400. Springer.
More details BibTeX DOI
Jelasity, M., Preuss, M., & Eiben, A. (2002). Operator learning for a problem class in a distributed peer-to-peer environment. In J.~J.~Merelo~Guervós, P., H.--G.~Beyer, J.--V., & H.--P.~Schwefel, (Eds.), Parallel Problem Solving from Nature — PPSN VII, Proc.~Seventh Int'l Conf., Granada, September~2002 (pp. 172–183). Lecture Notes in Computer Science: Vol. 2439. Springer.
More details BibTeX DOI
Jelasity, M., Preuss, M., & Paechter, B. (2002). A scalable and robust framework for distributed applications. In D.~B.~Fogel, M.-S., X.~Yao, G., H.~Iba, P., & M.~Shackleton, (Eds.), Proc.~2002 Congress on Evolutionary Computation (CEC'02) within Third IEEE World Congress on Computational Intelligence (WCCI'02) (pp. 1540–1545). IEEE Press.
More details BibTeX DOI
Jelasity, M., Preuss, M., Steen, M., & Paechter, B. (2002). Maintaining connectivity in a scalable and robust distributed environment. In H.~E.~Bal, K.--P., & A.~Reinefeld, (Eds.), Proc.~Second IEEE Int'l Symposium on Cluster Computing and the Grid (CCGrid'02) (pp. 389–394). {IEEE} Computer Society.
More details BibTeX DOI
Terveer, I. (2002). Die asymptotische Verteilung der Spannweite bei Zufallsgrößen mit paarweise identischer Korrelation. In Becker, J., Grob, H.-L., Klein, S., Kuchen, H., Müller-Funk, U., & Vossen, G. (Eds.), Arbeitsberichte des Instituts für Wirtschaftsinformatik: Vol. 74. Münster: Institut für Wirtschaftsinformatik, WWU Münster.
More details BibTeX
Bäck, T., Eiben, A., Graaf, J., Preuss, M., Schippers, A., & Taale, H. (1998). Optimizing traffic light controllers with evolutionary algorithms. In Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, 1730–1734.
More details BibTeX
Terveer, I. (1996). Bayesian Sequantially Planned Test of Simple Hypotheses: Contractivity and an Iterative Approach. Sequential Analysis (Sequential Anal.), 15(2), 91–102.
More details BibTeX
Terveer, I. (1995). Cost-Optimal Multistage Sampling Plans in Statistical Quality Control. Zeitschrift für Operations Research (ZOR), 41(1), 359–380.
More details BibTeX