Local Search Effects in Bi-Objective Orienteering
Bossek Jakob, Grimme Christian, Meisel Stephan, Rudolph Guenter, Trautmann Heike
Abstract
We analyze the effects of including local search techniques into a multi-objective evolutionary algorithm for solving a bi-objective orienteering problem with a single vehicle while the two conflicting objectives are minimization of travel time and maximization of the number of visited customer locations. Experiments are based on a large set of specifically designed problem instances with different characteristics and it is shown that local search techniques focusing on one of the objectives only improve the performance of the evolutionary algorithm in terms of both objectives. The analysis also shows that local search techniques are capable of sending locally optimal solutions to foremost fronts of the multi-objective optimization process, and that these solutions then become the leading factors of the evolutionary process.