A Two-Phase Framework for Detecting Manipulation Campaigns in Social Media

Assenmacher D, Clever L, Pohl JS, Trautmann H, Grimme C


Zusammenfassung
The identification of coordinated campaigns within Social Media is a complex task that is often hindered by missing labels and large amounts of data that have to be processed. We propose a new two-phase framework that uses unsupervised stream clustering for detecting suspicious trends over time in a first step. Afterwards, traditional offline analyses are applied to distinguish between normal trend evolution and malicious manipulation attempts. We demonstrate the applicability of our framework in the context of the final days of the Brexit in 2019/2020.

Schlüsselwörter
Social campaign detection; Stream clustering; Unsupervised learning



Publikationstyp
Forschungsartikel in Sammelband (Konferenz)

Begutachtet
Ja

Publikationsstatus
Veröffentlicht

Jahr
2020

Konferenz
International Conference on Human-Computer Interaction

Konferenzort
Copenhagen

Buchtitel
Proceedings of the International Conference on Human-Computer Interaction (HCII 2020): Social Computing and Social Media. Design, Ethics, User Behavior, and Social Network Analysis

Herausgeber
Meiselwitz G

Erste Seite
201

Letzte Seite
214

Verlag
Springer International Publishing

Ort
Cham

Sprache
Englisch

ISBN
978-3-030-49570-1

DOI