Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results

Rudolph G, Schütze O, Grimme C, Domínguez-Medina C, Trautmann H


Zusammenfassung
One main task in evolutionary multiobjective optimization (EMO) is to obtain a suitable finite size approximation of the Pareto front which is the image of the solution set, termed the Pareto set, of a given multiobjective optimization problem. In the technical literature, the characteristic of the desired approximation is commonly expressed by closeness to the Pareto front and a sufficient spread of the solutions obtained. In this paper, we first make an effort to show by theoretical and empirical findings that the recently proposed Averaged Hausdorff (orΔp-) indicator indeed aims at fulfilling both performance criteria for bi-objective optimization problems. In the second part of this paper, standard EMO algorithms combined with a specialized archiver and a postprocessing step based on theΔpindicator are introduced which sufficiently approximate the Δp-optimal archives and generate solutions evenly spread along the Pareto front.

Schlüsselwörter
Evolutionary computation; Δ p indicator; Hausdorff distance; Evolutionary multiobjective optimization



Publikationstyp
Aufsatz (Zeitschrift)

Begutachtet
Ja

Publikationsstatus
Veröffentlicht

Jahr
2016

Fachzeitschrift
Computational Optimization and Applications

Band
64

Ausgabe
2

Seiten
589-618

Sprache
Englisch

ISSN
0926-6003

DOI

Gesamter Text