A Novel Feature-Based Approach to Characterize Algorithm Performance for the Traveling Salesman Problem

Mersmann O, Bischl B, Trautmann H, Wagner M, Bossek J, Neumann F

Zusammenfassung

Meta-heuristics are frequently used to tackle NP-hard combinatorial optimization problems. With this paper we contribute to the understanding of the success of 2-opt based local search algorithms for solving the traveling salesperson problem (TSP). Although 2-opt is widely used in practice, it is hard to understand its success from a theoretical perspective. We take a statistical approach and examine the features of TSP instances that make the problem either hard or easy to solve. As a measure of problem difficulty for 2-opt we use the approximation ratio that it achieves on a given instance. Our investigations point out important features that make TSP instances hard or easy to be approximated by 2-opt.

Schlüsselwörter

TSP; 2-opt; Classification; Feature selection; MARS

Zitieren als

Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., & Neumann, F. (2013). A Novel Feature-Based Approach to Characterize Algorithm Performance for the Traveling Salesman Problem. Annals of Mathematics and Artificial Intelligence, 69, 151–182.

Details

Publikationstyp
Forschungsartikel (Zeitschrift)

Begutachtet
Ja

Publikationsstatus
Veröffentlicht

Jahr
2013

Fachzeitschrift
Annals of Mathematics and Artificial Intelligence

Band
69

Erste Seite
151

Letzte Seite
182

Sprache
Englisch

ISSN
1012-2443