R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection

Trautmann H, Wagne T, Brockhoff D

Zusammenfassung

An indicator-based evolutionary multiobjective optimization algorithm (EMOA) is introduced which incorporates the contribution to the unary R2-indicator as the secondary selection criterion. First experiments indicate that the R2-EMOA accurately approximates the Pareto front of the considered continuous multiobjective optimization problems. Furthermore, decision makers’ preferences can be included by adjusting the weight vector distributions of the indicator which results in a focused search behavior.

Zitieren als

Trautmann, H., Wagne, T., & Brockhoff, D. (2013). R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection. In Proceedings of the Learning and Intelligent Optimization Conference 7, Catania, Italy, 70–74.

Details

Publikationstyp
Forschungsartikel in Sammelband (Konferenz)

Begutachtet
Ja

Publikationsstatus
Veröffentlicht

Jahr
2013

Konferenz
Learning and Intelligent Optimization Conference 7

Konferenzort
Catania, Italy

Herausgeber
Trautmann H, Wagner T, Brockhoff D

Erste Seite
70

Letzte Seite
74

Anzahl der Seiten
24

Band
7997

Reihe
Lecture Notes in Computer Science

Sprache
Englisch