Automated Algorithm Selection in Single-Objective Continuous Optimization: A Comparative Study of Deep Learning and Landscape Analysis Methods

Prager, Raphael Patrick; Seiler, Moritz Vinzent; Trautmann, Heike; Kerschke, Pascal

Zusammenfassung

In recent years, feature-based automated algorithm selection using exploratory landscape analysis has demonstrated its great potential in single-objective continuous black-box optimization. However, feature computation is problem-specific and can be costly in terms of computational resources. This paper investigates feature-free approaches that rely on state-of-the-art deep learning techniques operating on either images or point clouds. We show that point-cloud-based strategies, in particular, are highly competitive and also substantially reduce the size of the required solver portfolio. Moreover, we highlight the effect and importance of cost-sensitive learning in automated algorithm selection models.

Schlüsselwörter

Automated Algorithm Selection; Exploratory Landscape Analysis; Deep Learning; Continuous Optimization

Zitieren als

Prager, R. P., Seiler, M. V., Trautmann, H., & Kerschke, P. (2022). Automated Algorithm Selection in Single-Objective Continuous Optimization: A Comparative Study of Deep Learning and Landscape Analysis Methods. In Rudolph, G., Kononova, A. V., Aguirre, H., Kerschke, P., Ochoa, G., & Tušar, T. (Eds.), Parallel Problem Solving from Nature — PPSN XVII (pp. 3–17). Cham: Springer International Publishing.

Details

Publikationstyp
Forschungsartikel in Sammelband (Konferenz)

Begutachtet
Ja

Publikationsstatus
Veröffentlicht

Jahr
2022

Konferenz
International Conference on Parallel Problem Solving from Nature

Konferenzort
Dortmund

Buchtitel
Parallel Problem Solving from Nature -- PPSN XVII

Herausgeber
Rudolph, Günter; Kononova, Anna V.; Aguirre, Hernán; Kerschke, Pascal; Ochoa, Gabriela; Tušar, Tea

Erste Seite
3

Letzte Seite
17

Verlag
Springer International Publishing

Ort
Cham

Sprache
Englisch

ISBN
978-3-031-14714-2

DOI

Gesamter Text