2020

 

Aufsatz (Zeitschrift)

Brandt, M., Tucker, C., Kariryaa, A., Rasmussen, K., Abel, C., Small, J., Chave, J., Rasmussen, L., Hiernaux, P., Diouf, A., Kergoat, L., Mertz, O., Igel, C., Gieseke, F., Schöning, J., Li, S., Melocik, K., Meyer, J., SinnoS, , Romero, E., Glennie, E., Montagu, A., Dendoncker, M., & Fensholt, R. (2020). An unexpectedly large count of non-forest trees in the Sahara and Sahel. Nature, 2020. (Accepted)
Mehr Details BibTeX

 

Aufsatz (Konferenz)

Gieseke, F., Rosca, S., Henriksen, T., Verbesselt, J., & Oancea, C. (2020). Massively-Parallel Change Detection for Satellite Time Series Data with Missing Values. In Proceedings of the International Conference on Data Engineering (ICDE), Dallas, USA. (Accepted)
Mehr Details BibTeX

2019

 

Aufsatz (Konferenz)

Ko, V., Oehmcke, S., & Gieseke, F. (2019). Magnitude and Uncertainty Pruning Criterion for Neural Networks. In Proceedings of the IEEE International Conference on Big Data, Los Angeles, USA, 2317–2326.
Mehr Details BibTeX Gesamter Text DOI

Oehmcke, S., Thrysøe, C., Borgstad, A., Salles, M., Brandt, M., & Gieseke, F. (2019). Detecting Hardly Visible Roads in Low-Resolution Satellite Time Series Data. In Proceedings of the International Conference on Big Data, Los Angeles, USA, 2403–2412.
Mehr Details BibTeX Gesamter Text DOI

2018

 

Aufsatz (Zeitschrift)

D'Isanto, A., Cavuoti, S., Gieseke, F., & Polsterer, K. (2018). Return of the features — Efficient feature selection and interpretation for photometric redshifts. Astronomy & Astrophysics, 616, A97.
Mehr Details BibTeX DOI

Florea, C., & Gieseke, F. (2018). Artistic movement recognition by consensus of boosted SVM based experts. Journal of Visual Communication and Image Representation, 56, 220–233.
Mehr Details BibTeX Gesamter Text DOI

 

Aufsatz (Konferenz)

Gieseke, F., & Igel, C. (2018). Training Big Random Forests with Little Resources. In Guo, Y., & Farooq, F. (Eds.), Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018 (pp. 1445–1454). ACM.
Mehr Details BibTeX Gesamter Text DOI

Gieseke, F., Oancea, C., Mahabal, A., Igel, C., & Heskes, T. (2018). Bigger Buffer k-d Trees on Multi-Many-Core Systems. In Senger, H., Marques, O., Garcia, R., Brito, T., Iope, R., Stanzani, S., & Costa, V. (Eds.), High Performance Computing for Computational Science — VECPAR 2018 — 13th International Conference, São Pedro, Brazil, September 17-19, 2018, Revised Selected Papers (pp. 202–214). Lecture Notes in Computer Science: Vol. 11333. Springer.
Mehr Details BibTeX Gesamter Text DOI

Mehren, M., Gieseke, F., Verbesselt, J., Rosca, S., Horion, S., & Zeileis, A. (2018). Massively-parallel break detection for satellite data. In Sacharidis, D., Gamper, J., & Böhlen, M. (Eds.), Proceedings of the 30th International Conference on Scientific and Statistical Database Management, SSDBM 2018, Bozen-Bolzano, Italy, July 09-11, 2018 (pp. 5:1-5:10). ACM.
Mehr Details BibTeX Gesamter Text DOI

2017

 

Aufsatz (Zeitschrift)

Beck, R., Lin, C., Ishida, E., Gieseke, F., Souza, R., Costa-Duarte, M., Hattab, M., & Krone-Martins, A. (2017). On the realistic validation of photometric redshifts. Monthly Notices of the Royal Astronomical Society (MNRAS), 468(4), 4323–4339.
Mehr Details BibTeX DOI

Gieseke, F., Bloemen, S., Bogaard, C., Heskes, T., Kindler, J., Scalzo, R., Ribeiro, V., Roestel, J., Groot, P., Yuan, F., Möller, A., & Tucker, B. (2017). Convolutional Neural Networks for Transient Candidate Vetting in Large-Scale Surveys. Monthly Notices of the Royal Astronomical Society (MNRAS), 472(3), 3101–3114.
Mehr Details BibTeX DOI

Gieseke, F., Oancea, C., & Igel, C. (2017). bufferkdtree: A Python library for massive nearest neighbor queries on multi-many-core devices. Knowledge Based Systems, 120, 1–3.
Mehr Details BibTeX Gesamter Text DOI

Kremer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K., & Igel, C. (2017). Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy. IEEE Intelligent Systems, 32(2), 16–22.
Mehr Details BibTeX Gesamter Text DOI

Souza, R., Dantas, M., Costa-Duarte, M., Feigelson, E., Killedar, M., Lablanche, P., Vilalta, R., Krone-Martins, A., Beck, R., & Gieseke, F. (2017). A probabilistic approach to emission-line galaxy classification. Monthly Notices of the Royal Astronomical Society (MNRAS), 472(3).
Mehr Details BibTeX DOI

Stensbo-Smidt, K., Gieseke, F., Zirm, A., Pedersen, K., & Igel, C. (2017). Sacrificing information for the greater good: how to select photometric bands for optimal accuracy. Monthly Notices of the Royal Astronomical Society (MNRAS), 464(3), 2577–2596.
Mehr Details BibTeX DOI

 

Aufsatz (Konferenz)

Florea, C., Toca, C., & Gieseke, F. (2017). Artistic Movement Recognition by Boosted Fusion of Color Structure and Topographic Description. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Santa Rosa, CA, USA, 569–577.
Mehr Details BibTeX Gesamter Text DOI

Gieseke, F., Polsterer, K., Mahabal, A., Igel, C., & Heskes, T. (2017). Massively-parallel best subset selection for ordinary least-squares regression. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence, Honolulu, HI, USA, 1–8.
Mehr Details BibTeX Gesamter Text DOI

Mahabal, A., Sheth, K., Gieseke, F., Pai, A., Djorgovski, S., Drake, A., & Graham, M. (2017). Deep-learnt classification of light curves. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence, Honolulu, HI, USA, 1–8.
Mehr Details BibTeX Gesamter Text DOI

2016

 

Aufsatz (Zeitschrift)

Sasdelli, M., Ishida, E., Vilalta, R., Aguena, M., Busti, V., Camacho, H., Trindade, A., Gieseke, F., Souza, R., Fantaye, Y., & Mazzali, P. (2016). Exploring the spectroscopic diversity of type Ia supernovae with DRACULA: A machine learning approach. Monthly Notices of the Royal Astronomical Society (MNRAS), 461(2), 2044–2059.
Mehr Details BibTeX DOI

 

Aufsatz (Konferenz)

Ishida, E., Sasdelli, M., Vilalta, R., Aguena, M., Busti, V., Camacho, H., Trindade, A., Gieseke, F., Souza, R., Fantaye, Y., & Mazzali, P. (2016). Exploring the spectroscopic diversity of type Ia supernovae with Deep Learning and Unsupervised Clustering. In Brescia, M., Djorgovski, S., Feigelson, E., Longo, G., & Cavuoti, S. (Eds.), Proceedings of the International Astronomical Union (pp. 247–252). Proceedings of the International Astronomical Union: Vol. 12. Cambridge University Press.
Mehr Details BibTeX Gesamter Text DOI

Polsterer, K., Gieseke, F., Igel, C., Doser, B., & Gianniotis, N. (2016). Parallelized rotation and flipping INvariant Kohonen maps (PINK) on GPUs. In Proceedings of the 24th European Symposium on Artificial Neural Networks, Bruges, Belgium.
Mehr Details BibTeX Gesamter Text

2015

 

Aufsatz (Zeitschrift)

Kremer, J., Gieseke, F., Pedersen, K., & Igel, C. (2015). Nearest Neighbor Density Ratio Estimation for Large-Scale Applications in Astronomy. Astronomy and Computing, 12, 62–72.
Mehr Details BibTeX DOI

 

Aufsatz (Konferenz)

Gieseke, F. (2015). An Efficient Many-Core Implementation for Semi-Supervised Support Vector Machines. In Pardalos, P., Pavone, M., Farinella, G., & Cutello, V. (Eds.), Machine Learning, Optimization, and Big Data — First International Workshop, MOD 2015, Taormina, Sicily, Italy, July 21-23, 2015, Revised Selected Papers (pp. 145–157). Lecture Notes in Computer Science: Vol. 9432. Springer.
Mehr Details BibTeX Gesamter Text DOI

Gieseke, F., Pahikkala, T., & Heskes, T. (2015). Batch Steepest-Descent-Mildest-Ascent for Interactive Maximum Margin Clustering. In Fromont, B. T., & Leeuwen, M. (Eds.), Advances in Intelligent Data Analysis XIV — 14th International Symposium, IDA 2015, Saint Etienne, France, October 22-24, 2015, Proceedings (pp. 95–107). Lecture Notes in Computer Science: Vol. 9385. Springer.
Mehr Details BibTeX Gesamter Text DOI

2014

 

Aufsatz (Zeitschrift)

Gieseke, F., Airola, A., Pahikkala, T., & Kramer, O. (2014). Fast and simple gradient-based optimization for semi-supervised support vector machines. Neurocomputing, 123, 23–32.
Mehr Details BibTeX Gesamter Text DOI

Pahikkala, T., Airola, A., Gieseke, F., & Kramer, O. (2014). On Unsupervised Training of Multi-Class Regularized Least-Squares Classifiers. Journal of Computer Science and Technology (ICDM 2012 Special Issue), 29(1), 90–104.
Mehr Details BibTeX Gesamter Text DOI

 

Aufsatz (Konferenz)

Gieseke, F., Heinermann, J., Oancea, C., & Igel, C. (2014). Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs. In Proceedings of the 31th International Conference on Machine Learning, Beijing, China, 172–180.
Mehr Details BibTeX Gesamter Text

Gieseke, F., Polsterer, K., Oancea, C., & Igel, C. (2014). Speedy greedy feature selection: Better redshift estimation via massive parallelism. In Proceedings of the 22th European Symposium on Artificial Neural Networks, Bruges, Belgium.
Mehr Details BibTeX Gesamter Text

Kramer, O., Gieseke, F., Heinermann, J., Poloczek, J., & Treiber, N. (2014). A Framework for Data Mining in Wind Power Time Series. In Woon, W., Aung, Z., & Madnick, S. (Eds.), Data Analytics for Renewable Energy Integration — Second ECML PKDD Workshop, DARE 2014, Nancy, France, September 19, 2014, Revised Selected Papers (pp. 97–107). Lecture Notes in Computer Science: Vol. 8817. Springer.
Mehr Details BibTeX Gesamter Text DOI

2013

 

Aufsatz (Zeitschrift)

Gieseke, F. (2013). From Supervised to Unsupervised Support Vector Machines and Applications in Astronomy. KI, 27(3), 281–285.
Mehr Details BibTeX Gesamter Text DOI

Gieseke, F. (2013). Von überwachten zu unüberwachten Support-Vektor-Maschinen und Anwendungen in der Astronomie. Ausgezeichnete Informatikdissertationen 2012, D-13, 111–120.
Mehr Details BibTeX

Kramer, O., Gieseke, F., & Polsterer, K. (2013). Learning morphological maps of galaxies with unsupervised regression. Expert Systems with Applications, 40(8), 2841–2844.
Mehr Details BibTeX Gesamter Text DOI

Kramer, O., Gieseke, F., & Satzger, B. (2013). Wind energy prediction and monitoring with neural computation. Neurocomputing, 109, 84–93.
Mehr Details BibTeX Gesamter Text DOI

Polsterer, K., Zinn, P., & Gieseke, F. (2013). Finding New High-Redshift Quasars by Asking the Neighbours. Monthly Notices of the Royal Astronomical Society (MNRAS), 428(1), 226–235.
Mehr Details BibTeX DOI

 

Aufsatz (Konferenz)

Gieseke, F., & Kramer, O. (2013). Towards Non-linear Constraint Estimation for Expensive Optimization. In Esparcia{-}Alc{á}zar, A. (Ed.), Applications of Evolutionary Computation — 16th European Conference, EvoApplications 2013, Vienna, Austria, April 3-5, 2013. Proceedings (pp. 459–468). Lecture Notes in Computer Science: Vol. 7835. Springer.
Mehr Details BibTeX Gesamter Text DOI

Gieseke, F., Pahikkala, T., & Igel, C. (2013). Polynomial Runtime Bounds for Fixed-Rank Unsupervised Least-Squares Classification. In Ong, C., & Ho, T. (Eds.), Asian Conference on Machine Learning, ACML 2013, Canberra, ACT, Australia, November 13-15, 2013 (pp. 62–71). JMLR Workshop and Conference Proceedings: Vol. 29. JMLR.org.
Mehr Details BibTeX Gesamter Text

Heinermann, J., Kramer, O., Polsterer, K., & Gieseke, F. (2013). On GPU-Based Nearest Neighbor Queries for Large-Scale Photometric Catalogs in Astronomy. In Timm, I., & Thimm, M. (Eds.), KI 2013: Advances in Artificial Intelligence — 36th Annual German Conference on AI, Koblenz, Germany, September 16-20, 2013. Proceedings (pp. 86–97). Lecture Notes in Computer Science: Vol. 8077. Springer.
Mehr Details BibTeX Gesamter Text DOI

Kramer, O., Treiber, N., & Gieseke, F. (2013). Support Vector Machines for Wind Energy Prediction in Smart Grids. In Page, B., Fleischer, A., Göbel, J., & Wohlgemuth, V. (Eds.), 27th International Conference on Environmental Informatics for Environmental Protection, Sustainable Development and Risk Management, EnviroInfo 2013, Hamburg, Germany, September 2-4, 2013. Proceedings (pp. 16–24). Shaker.
Mehr Details BibTeX Gesamter Text

2012

 

Aufsatz (Zeitschrift)

Gieseke, F., Kramer, O., Airola, A., & Pahikkala, T. (2012). Efficient recurrent local search strategies for semi- and unsupervised regularized least-squares classification. Evolutionary Intelligence, 5(3), 189–205.
Mehr Details BibTeX Gesamter Text DOI

Gieseke, F., Moruz, G., & Vahrenhold, J. (2012). Resilient k-d trees: k-means in space revisited. Frontiers of Computer Science (ICDM 2010 Special Issue), 6(2), 166–178.
Mehr Details BibTeX Gesamter Text DOI

Kramer, O., & Gieseke, F. (2012). Evolutionary kernel density regression. Expert Systems and Applications, 39(10), 9246–9254.
Mehr Details BibTeX Gesamter Text DOI

 

Aufsatz (Konferenz)

Gieseke, F., Airola, A., Pahikkala, T., & Kramer, O. (2012). Sparse Quasi-Newton Optimization for Semi-supervised Support Vector Machines. In Carmona, P., Sánchez, J., & Fred, A. (Eds.), ICPRAM 2012 — Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods, Volume 1, Vilamoura, Algarve, Portugal, 6-8 February, 2012 (pp. 45–54). SciTePress.
Mehr Details BibTeX

Pahikkala, T., Airola, A., Gieseke, F., & Kramer, O. (2012). Unsupervised Multi-class Regularized Least-Squares Classification. In Zaki, M., Siebes, A., Yu, J., Goethals, B., Webb, G., & Wu, X. (Eds.), 12th IEEE International Conference on Data Mining, ICDM 2012, Brussels, Belgium, December 10-13, 2012 (pp. 585–594). IEEE Computer Society.
Mehr Details BibTeX Gesamter Text DOI

 

Abschlussarbeit (Dissertation, Habilitation)

Gieseke, F. (2012). From supervised to unsupervised support vector machines and applications in astronomy. Dissertation at the Carl von Ossietzky University of Oldenburg.
Mehr Details BibTeX Gesamter Text

2011

 

Aufsatz (Konferenz)

Gieseke, F., Kramer, O., Airola, A., & Pahikkala, T. (2011). Speedy Local Search for Semi-Supervised Regularized Least-Squares. In Bach, J., & Edelkamp, S. (Eds.), KI 2011: Advances in Artificial Intelligence, 34th Annual German Conference on AI, Berlin, Germany, October 4-7,2011. Proceedings (pp. 87–98). Lecture Notes in Computer Science: Vol. 7006. Springer.
Mehr Details BibTeX Gesamter Text DOI

Kramer, O., & Gieseke, F. (2011). Analysis of wind energy time series with kernel methods and neural networks. In Ding, Y., Wang, H., Xiong, N., Hao, K., & Wang, L. (Eds.), Seventh International Conference on Natural Computation, ICNC 2011, Shanghai, China, 26-28 July, 2011 (pp. 2381–2385). IEEE.
Mehr Details BibTeX Gesamter Text DOI

Kramer, O., & Gieseke, F. (2011). Variance Scaling for EDAs Revisited. In Bach, J., & Edelkamp, S. (Eds.), KI 2011: Advances in Artificial Intelligence, 34th Annual German Conference on AI, Berlin, Germany, October 4-7,2011. Proceedings (pp. 169–178). Lecture Notes in Computer Science: Vol. 7006. Springer.
Mehr Details BibTeX Gesamter Text DOI

Kramer, O., & Gieseke, F. (2011). Short-Term Wind Energy Forecasting Using Support Vector Regression. In Corchado, E., Sn{á}sel, V., Sedano, J., Hassanien, A., Calvo{-}Rolle, J., & Slezak, D. (Eds.), Soft Computing Models in Industrial and Environmental Applications, 6th International Conference {SOCO} 2011, 6-8 April, 2011, Salamanca, Spain (pp. 271–280). Advances in Intelligent and Soft Computing: Vol. 87. Springer.
Mehr Details BibTeX Gesamter Text DOI

2010

 

Aufsatz (Zeitschrift)

Gieseke, F., Gudmundsson, J., & Vahrenhold, J. (2010). Pruning Spanners and Constructing Well-Separated Pair Decompositions in the Presence of Memory Hierarchies. Journal of Discrete Algorithms (JDA), 8(3), 259–272.
Mehr Details BibTeX DOI

 

Aufsatz (Konferenz)

Gieseke, F., Moruz, G., & Vahrenhold, J. (2010). Resilient K-d Trees: K-Means in Space Revisited. In Proceedings of the 10th IEEE International Conference on Data Mining (ICDM), Sydney, Australia, 815–820.
Mehr Details BibTeX DOI

Gieseke, F., Polsterer, K., Thom, A., Zinn, P., Bomans, D., Dettmar, R.-J., Kramer, O., & Vahrenhold, J. (2010). Detecting Quasars in Large-Scale Astronomical Surveys. In Proceedings of the 9th International Conference on Machine Learning and Applications (ICMLA), Washington D.C., USA, 352–357.
Mehr Details BibTeX DOI

2009

 

Aufsatz (Konferenz)

Gieseke, F., Pahikkala, T., & Kramer, O. (2009). Fast evolutionary maximum margin clustering. In Proceedings of the 26th International Conference on Machine Learning (ICML 2009), Montreal, Canada, 361–368.
Mehr Details BibTeX Gesamter Text DOI