Former Research Assistant
Data Science: Statistics and Optimization
 
                        Leonardo Campus 3
                        48149
                        Münster
                    
External profiles:
ResearchGate
Google Scholar
 
                        Leonardo Campus 3
                        48149
                        Münster
                    
        Griesbach, M., Lütke, S. J., Winkelmann, H., & Grimme, C. (2026). Towards Simulating User Behavior for Automating Usability Tests by Employing Large Language Models. (accepted / in press (not yet published))        
        More details                            
        Lütke, S., Janina;, G., Britta;, G., Marie;, G., & Christian,  (2025). Out of Order: On the Importance of Word Positions in Explaining Text Classification. In Nicosia, , Giuseppe;, P., Panos;, O., & Varun;, e. a. (Eds.), The 11th International Conference on Machine Learning,Optimization and Data Science — LOD 2025 (pp. 1–15). Lecture Notes of Computer Science (LNCS). Cham: Springer Nature. (accepted / in press (not yet published))        
        More details        BibTeX                    
        Bayer, J., & Grimme, C. (Eds.) (2024). Code and Conscience — Exploring Technology, Human Rights, and Ethics in Multidisciplinary AI Education (1st ed.). Lecture Notes in Artificial Intelligence: Vol. 14400. Cham: Springer Nature.        
        More details        BibTeX                DOI    
        Bossek, J., & Grimme, C. (2024). Generalised Kruskal Mutation for the Multi-Objective Minimum Spanning Tree Problem. In Xiaodong, L., & Julia, H. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (pp. 133–141-133–141). GECCO '24. New York, NY, USA: Association for Computing Machinery.        
        More details        BibTeX        Full text        DOI    
        Stampe, L., Lütke-Stockdiek, J., Grimme, B., & Grimme, C. (2024). Benchmarking Sentence Embeddings in Textual Stream Clustering with Applications to Campaign Detection. In Hirose, A., Ishibuchi, H., Jayne, C., & ,  (Eds.), Proceedings of the IEEE World Congress on Computational Intelligence (WCCI) — International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). New Jersey: Wiley-IEEE Press.        
        More details        BibTeX        Full text        DOI    
        Bossek, J., & Grimme, C. (2024). On Single-Objective Sub-Graph-Based Mutation for Solving the Bi-Objective Minimum Spanning Tree Problem. Evolutionary Computation, 32(2), 143–175.        
        More details        BibTeX                DOI    
        Grimme, B., Pohl, J., Winkelmann, H., Stampe, L., & Grimme, C. (2023). Lost in Transformation: Rediscovering LLM-Generated Campaigns in Social Media. In Ceolin, D., Caselli, T., & Tulin, M. (Eds.), Disinformation in Open Online Media (pp. 72–87). Lecture Notes in Computer Science: Vol. 14397. Amsterdam, Niederlande: Springer.        
        More details        BibTeX                DOI    
        Klapproth, J., Unger, S., Pohl, J., Boberg, S., Grimme, C., & Quandt, T. (2023). Immunize the Public against Disinformation Campaigns: Developing a Framework for Analyzing the Macrosocial Effects of Prebunking Interventions. In Bui, T. X. (Ed.), Proceedings of the 56th Hawaii International Conference on System Sciences (HICSS) (pp. 2411–2420). Honolulu, HI, USA: ScholarSpace.        
        More details        BibTeX        Full text            
        Pohl, J. S., Markmann, S., Assenmacher, D., & Grimme, C. (2023). Invasion@Ukraine: Providing and describing a Twitter streaming dataset that captures the outbreak of war between Russia and Ukraine in 2022. In Lin, Y.-R., Cha, M., & Quercia, D. (Eds.), Proceedings of the Seventeenth International AAAI Conference on Web and Social Media (pp. 1093–1101). Palo Alto, CA, USA: AAAI Press.        
        More details        BibTeX        Full text            
        Schäpermeier, L., Kerschke, P., Grimme, C., & Trautmann, H. (2023). Peak-A-Boo! Generating Multi-Objective Multiple Peaks Benchmark Problems with Precise Pareto Sets. In Li, K., & Wang, H. (Eds.), Proceedings of the International Conference Series on Evolutionary Multi-Criterion Optimization (pp. 291–304). Lecture Notes in Computer Science: Vol. 13970. Cham: Springer.        
        More details        BibTeX                DOI    
        Stampe, L., Pohl, J., & Grimme, C. (2023). Towards Multimodal Campaign Detection: Including Image Information in Stream Clustering to Detect Social Media Campaigns. In Ceolin, D., Caselli, T., & Tulin, M. (Eds.), Disinformation in Open Online Media (pp. 144–159). Lecture Notes in Computer Science: Vol. 14397. Amsterdam: Springer.        
        More details        BibTeX                DOI    
        Grimme, C., Pohl, J., Cresci, S., Lüling, R., & Preuss, M. (2022). New Automation for Social Bots: From Trivial Behavior to AI-Powered Communication. In Spezzano, F., Amaral, A., Ceolin, D., Fazio, L., & Serra, E. (Eds.), Proceedings of the 4th Multidisciplinary International Symposium on Disinformation in Open Online Media (MISDOOM) (1st ed., pp. 79–99). Lecture Notes in Computer Science: Vol. 4. Cham, Switzerland: Springer Nature.        
        More details        BibTeX        Full text        DOI    
        Pohl, J. S., Assenmacher, D., Seiler, M. V., Trautmann, H., & Grimme, C. (2022). Artificial Social Media Campaign Creation for Benchmarking and Challenging Detection Approaches. In Association, f. t. A. o. A. I. (. (Ed.), Workshop Proceedings of the 16th International Conference on Web and Social Media (ICWSM) (pp. 1–10). Palo Alto, CA, USA: AAAI Press.        
        More details        BibTeX        Full text        DOI    
        Rook, J., Trautmann, H., Bossek, J., & Grimme, C. (2022). On the Potential of Automated Algorithm Configuration on Multi-Modal Multi-Objective Optimization Problems. In Fieldsend, J., & Wagner, M. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 356–359-356–359). GECCO '22. New York, NY, USA: Association for Computing Machinery.        
        More details        BibTeX        Full text        DOI    
        Schäpermeier, L., Grimme, C., & Kerschke, P. (2022). MOLE: Digging Tunnels Through Multimodal Multi-Objective Landscapes. In Fieldsend, J. E. (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference (pp. 592–600). New York, NY, USA: Association for Computing Machinery, Inc.        
        More details        BibTeX        Full text        DOI    
        Aspar, P., Steinhoff, V., Schäpermeier, L., Kerschke, P., Trautmann, H., & Grimme, C. (2022). The objective that freed me: a multi-objective local search approach for continuous single-objective optimization. Natural Computing, 22(2), 271–285.        
        More details        BibTeX        Full text        DOI    
        Schäpermeier, L., Grimme, C., & Kerschke, P. (2022). Plotting Impossible? Surveying Visualization Methods for Continuous Multi-Objective Benchmark Problems. IEEE Transactions on Evolutionary Computation, 26(6), 1306–1320.        
        More details        BibTeX                DOI    
        Leszkiewicz, A., Bucur, D., Grimme, C., Michalski, R., Clever, L., Pohl, J. S., Rook, J., Bossek, J., Preuss, M., Squillero, G., Quer, S., Calabrese, A., Iacca, G., Kizgin, H., & Trautmann, H. (2022). Social Influence Analysis (SIA) in Online Social Networks.        
        More details                            
        Pohl, J. S., Seiler, M. V., Assenmacher, D., & Grimme, C. (2022). A Twitter Streaming Dataset collected before and after the Onset of the War between Russia and Ukraine in 2022.        
        More details                Full text        DOI    
        Aspar, P., Kerschke, P., Steinhoff, V., Trautmann, H., & Grimme, C. (2021). Multi^3: Optimizing Multimodal Single-Objective Continuous Problems in the Multi-Objective Space by Means of Multiobjectivization. In Ishibuchi, H. e. a. (Ed.), Evolutionary Multi-Criterion Optimization: 11th International Conference, EMO 2021, Shenzhen, China, March 28–31, 2021, Proceedings (pp. 311–322). Heidelberg, Berlin: Springer.        
        More details        BibTeX        Full text        DOI    
        Markmann, S., & Grimme, C. (2021). Is YouTube Still a Radicalizer? An Exploratory Study on Autoplay and Recommendation. In Proceedings of the Multidisciplinary International Symposium on Disinformation in Open Online Media (MISDOOM), Oxford, UK, 50–65.        
        More details        BibTeX        Full text        DOI    
        Schäpermeier, L., Grimme, C., & Kerschke, P. (2021). To Boldly Show What No One Has Seen Before: A Dashboard for Visualizing Multi-objective Landscapes. In Proceedings of the 11th International Conference on Evolutionary Multi-Criterion Optimization (EMO), Shenzhen, China, 632–644.        
        More details        BibTeX        Full text        DOI    
        Assenmacher, D., Weber, D., Preuss, M., Calero, V. A., Bradshaw, A., Ross, B., Cresci, S., Trautmann, H., Neumann, F., & Grimme, C. (2021). Benchmarking Crisis in Social Media Analytics: A Solution for the Data-Sharing Problem. Social Science Computer Review, online first.        
        More details        BibTeX                DOI    
        Coombs, C., Stacey, P., Kawalek, P., Simeonova, B., Becker, J., Bergener, K., Carvalho, J. Á., Fantinato, M., Garmann-Johnsen, N. F., Grimme, C., Stein, A., & Trautmann, H. (2021). What Is It About Humanity That We Can’t Give Away To Intelligent Machines? A
European Perspective. International Journal of Information Management, 58.        
        More details        BibTeX        Full text        DOI    
        Grimme, C., Kerschke, P., Aspar, P., Trautmann, H., Preuss, M., Deutz, A., Wang, H., & Emmerich, M. (2021). Peeking beyond peaks: Challenges and research potentials of continuous multimodal multi-objective optimization. Computers & Operations Research, 136, 105489.        
        More details        BibTeX        Full text        DOI    
        Grimme, C. (2020). Künstliche Intelligenz: Begriffsklärungen und technische Einschätzungen als Grundlage für Regulierungsansätze. In Aufderheide, D., & Dabrowski, M. (Eds.), Digitalisierung und Künstliche Intelligenz: Wirtschaftsethische und moralökonomische Perspektiven (pp. 159–169). Volkswirtschaftliche Schriften (VWS): Vol. 574. Berlin: Duncker & Humblot.        
        More details        BibTeX                DOI    
        Assenmacher, D., Adam, L., Trautmann, H., & Grimme, C. (2020). Towards Real-Time and Unsupervised Campaign Detection in Social Media. In Proceedings of the Florida Artificial Intelligence Research Society Conference, Florida, USA.        
        More details        BibTeX        Full text            
        Assenmacher, D., Clever, L., Pohl, J., Trautmann, H., & Grimme, C. (2020). A Two-Phase Framework for Detecting Manipulation Campaigns in Social Media. In Meiselwitz, G. (Ed.), Proceedings of the International Conference on Human-Computer Interaction (HCII 2020): Social Computing and Social Media. Design, Ethics, User Behavior, and Social Network Analysis (pp. 201–214). Cham: Springer International Publishing.        
        More details        BibTeX                DOI    
        Assenmacher, D., & Adam, L. &. F. L. &. T. H. &. G. C. (2020). Inside the tool set of automation: Free social bot code revisited. In Grimme, C., Preuß, M., Takes, F., & Waldherr, A. (Eds.), Disinformation in open online media (pp. 101–114). Lecture Notes in Computer Science. Wiesbaden: Springer.        
        More details        BibTeX                    
        Bossek, J., Grimme, C., Rudolph, G., & Trautmann, H. (2020). Towards Decision Support in Dynamic Bi-Objective Vehicle Routing. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 1–8.        
        More details        BibTeX                DOI    
        Bossek, J., Grimme, C., & Trautmann, H. (2020). Dynamic Bi-Objective Routing  of Multiple Vehicles. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '20), Cancun, Mexico, 166–174.        
        More details        BibTeX                    
        Clever, L., Assenmacher, D., Müller, K., Seiler, M. V., Riehle, D. M., Preuss, M., & Grimme, C. (2020). FakeYou! — A Gamified Approach for Building and Evaluating Resilience Against Fake News. In van Duijn, , Max;, P., Mike;, S., Viktoria;, T., Frank;, V., & Suzan,  (Eds.), Disinformation in Open Online Media. Second Multidisciplinary International Symposium, MISDOOM 2020, Leiden, The Netherlands, October 26–27, 2020, Proceedings (pp. 218–232). Lecture Notes in Computer Science: Vol. 12259. Cham: Springer.        
        More details        BibTeX                DOI    
        Schäpermeier, L., Grimme, C., & Kerschke, P. (2020). One PLOT to Show Them All: Visualization of Efficient Sets in Multi-Objective Landscapes. In Proceedings of the 16th International Conference on Parallel Problem Solving from Nature (PPSN XVI), Leiden, The Netherlands, 154–167.        
        More details        BibTeX        Full text        DOI    
        Steinhoff, V., Kerschke, P., Aspar, P., Trautmann, H., & Grimme, C. (2020). Multiobjectivization of Local Search: Single-Objective Optimization Benefits From Multi-Objective Gradient Descent. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 2445–2452.        
        More details        BibTeX        Full text        DOI    
        Assenmacher, D., Clever, L., Frischlich, L., Quandt, T., Trautmann, , Heike, , & Grimme, C. (2020). Demystifying social bots: On the intelligence of automated social media actors. Social media — society, 00.        
        More details        BibTeX                    
        Steinhoff, V., Kerschke, P., & Grimme, C. (2020). Empirical Study on the Benefits of Multiobjectivization for Solving Single-Objective Problems.        
        More details        BibTeX        Full text            
        Bossek, J., & Grimme, C. (2019). Solving Scalarized Subproblems within Evolutionary Algorithms for Multi-Criteria Shortest Path Problems. In Battiti, R., Brunato, M., Kotsireas, I., & Pardalos, P. (Eds.), Learning and Intelligent Optimization (pp. 184–198). Lecture Notes in Computer Science: Vol. 11353. Cham: Springer.        
        More details        BibTeX                DOI    
        Bossek, J., Grimme, C., & Neumann, F. (2019). On the Benefits of Biased Edge-Exchange Mutation for the Multi-Criteria Spanning Tree Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '19), Prague, Czech Republic, 516–523.        
        More details        BibTeX                    
        Bossek, J., Grimme, C., Meisel, S., Rudolph, G., & Trautmann, H. (2019). Bi-Objective Orienteering: Towards a Dynamic Multi-Objective Evolutionary Algorithm. In Deb, K., Goodman, E., Coello, C. C. A., Klamroth, K., Miettinen, K., Mostaghim, S., & Reed, P. (Eds.), Evolutionary Multi-Criterion Optimization (EMO) (pp. 516–528). Lecture Notes in Computer Science: Vol. 11411. Springer International Publishing.        
        More details        BibTeX                DOI    
        Grimme, C., Kerschke, P., Emmerich, M. T. M., Preuss, M., Deutz, A. H., & Trautmann, H. (2019). Sliding to the Global Optimum: How to Benefit from Non-Global
Optima in Multimodal Multi-Objective Optimization. In Proceedings of the International Global Optimization Workshop (LeGO 2018), Leiden, The Netherlands, 020052-1-020052-4.        
        More details        BibTeX        Full text        DOI    
        Grimme, C., Kerschke, P., & Trautmann, H. (2019). Multimodality in Multi-Objective Optimization — More Boon than Bane?. In Proceedings of the 10th International Conference on Evolutionary Multi-Criterion Optimization (EMO), East Lansing, MI, USA, 126–138.        
        More details        BibTeX        Full text        DOI    
        Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., & Emmerich, M. (2019). Search Dynamics on Multimodal Multi-Objective Problems. Evolutionary Computation (ECJ), 27(4), 577–609.        
        More details        BibTeX        Full text        DOI    
        Grimme, C., & Bossek, J. (2018). Einführung in die Optimierung — Konzepte, Methoden und Anwendungen (1st ed.). Springer Vieweg.        
        More details        BibTeX                DOI    
        Bossek, J., Grimme, C., Meisel, S., Rudolph, G., & Trautmann, H. (2018). Local Search Effects in Bi-Objective Orienteering. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '18), Kyoto, Japan, 585–592.        
        More details        BibTeX                DOI    
        Grimme, C., Assenmacher, D., & Adam, L. (2018). Changing Perspectives: Is it Sufficient to Detect Social Bots?. In Meiselwitz, G. (Ed.), Social Computing and Social Media. User Experience and Behavior (pp. 445–461). Lecture Notes in Computer Science: Vol. 10913. Cham: Springer International Publishing.        
        More details        BibTeX                DOI    
        Frischlich, L., & Grimme, C. (2018). Manipulation im Netz: (Medien-) Pädagogik zwischen Fake Accounts, Social Bots, und Propaganda. Münster: Online Whitepaper.        
        More details        BibTeX        Full text            
        Tierney, K., Handali, J., Grimme, C., & Trautmann, H. (2017). Multi-objective Optimization for Liner Shipping Fleet Repositioning. In Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M., Jin, Y., & Grimme, C. (Eds.), Evolutionary Multi-Criterion Optimization: 9th International Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings (pp. 622–638). Cham: Springer International Publishing.        
        More details        BibTeX        Full text        DOI    
        Bossek, J., & Grimme, C. (2017). An Extended Mutation-Based Priority-Rule Integration Concept for Multi-Objective Machine Scheduling. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Honolulu, Hawaii.        
        More details        BibTeX                DOI    
        Bossek, J., & Grimme, C. (2017). A Pareto-Beneficial Sub-Tree Mutation for the Multi-Criteria Minimum Spanning Tree Problem. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Honolulu, Hawai, 3280–3287.        
        More details        BibTeX                DOI    
        Kerschke, P., & Grimme, C. (2017). An Expedition to Multimodal Multi-Objective Optimization Landscapes. In Proceedings of the 9th International Conference on Evolutionary Multi-Criterion Optimization (EMO), Münster, Germany, 329–343.        
        More details        BibTeX        Full text        DOI    
        Lang, M., & Grimme, C. (2017). Towards Standardized and Seamless Integration of Expert Knowledge into Multi-objective Evolutionary Optimization Algorithms. In Proceedings of the Evolutionary Multi-Criterion Optimization, Münster, 375–389.        
        More details        BibTeX        Full text        DOI    
        Grimme, C., Preuss, M., Adam, L., & Trautmann, H. (2017). Social Bots: Human-Like by Means of Human Control?. Big Data, 5(4), 279–293.        
        More details        BibTeX        Full text        DOI    
        Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., & Emmerich, M. (2016). Towards Analyzing Multimodality of Multiobjective Landscapes. In Proceedings of the 14th International Conference on Parallel Problem Solving from Nature (PPSN XIV), Edinburgh, Scotland, 962–972.        
        More details        BibTeX        Full text        DOI    
        Rudolph, G., Schütze, O., Grimme, C., Domínguez-Medina, C., & Trautmann, H. (2016). Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results. Computational Optimization and Applications (Comput. Optim. Appl.), 64(2), 589–618.        
        More details        BibTeX        Full text        DOI    
        Grimme, C., Meisel, S., Trautmann, H., Rudolph, G., & Wölck, M. (2015). Multi-Objective Analysis of Approaches to Dynamic Routing Of a Vehicle. In Proceedings of the European Conference On Information Systems, Münster, Germany.        
        More details        BibTeX                    
        Meisel, S., Grimme, C., Bossek, J., Wölck, M., Rudolph, G., & Trautmann, H. (2015). Evaluation of a Multi-Objective EA on Benchmark Instances for Dynamic Routing of a Vehicle. In Proceedings of the Genetic and Evolutionary Computation Conference, Madrid, Spain, 425–432.        
        More details        BibTeX                DOI    
        Martí, L., Grimme, C., Kerschke, P., Trautmann, H., & Rudolph, G. (2015). Averaged Hausdorff Approximations of Pareto Fronts Based on Multiobjective Estimation of Distribution Algorithms. Poster session presented at the Genetic and Evolutionary Computation Conference (GECCO '15), Madrid, Spain.        
        More details        BibTeX        Full text        DOI    
        Martí, L., Grimme, C., Kerschke, P., Trautmann, H., & Rudolph, G. (2015). Averaged Hausdorff Approximations of Pareto Fronts based on Multiobjective Estimation of Distribution Algorithms.        
        More details                Full text        DOI    
        Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J.-Q., Grimme, C., Rudolph, G., Bischl, B., & Trautmann, H. (2014). Cell Mapping Techniques for Exploratory Landscape Analysis. In Tantar, A.-A., Tantar, E., Sun, J.-Q., Zhang, W., Ding, Q., Schütze, O., Emmerich, M. T. M., Legrand, P., Del, M. P., & Coello, C. C. A. (Eds.), EVOLVE — A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V (pp. 115–131). Advances in Intelligent Systems and Computing: Vol. 288. Cham: Springer International Publishing.        
        More details        BibTeX        Full text        DOI    
        Rudolph, G., Schütze, O., Grimme, C., & Trautmann, H. (2014). A Multiobjective Evolutionary Algorithm Guided by Averaged Hausdorff Distance to Aspiration Sets. In Tantar, A., Tantar, E., Sun, J., Zhang, W., Ding, Q., Schütze, O., Emmerich, M., Legrand, P., Del, M. P., & Coello, C. C. (Eds.), EVOLVE — A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V (pp. 261–273). Advances in Intelligent Systems and Computing: Vol. 288. Springer International Publishing.        
        More details        BibTeX        Full text        DOI    
        Rudolph, G., Grimme, C., Schütze, O., & Trautmann, H. (2014). An Aspiration Set EMOA Based on Averaged Hausdorff Distances. In Proceedings of the Learning and Intelligent OptimizatioN Conference (LION 8), Gainesville, Florida, USA, 153–156.        
        More details        BibTeX        Full text            
        Grimme, C., Kemmerling, M., & Lepping, J. (2013). On the Integration of Theoretical Single-Objective Scheduling Results for Multi-objective Problems. In Tantar, E., Tantar, A., Bouvry, P., Del, M. P., Legrand, P., Coello, C. C., & Schütze, O. (Eds.), EVOLVE- A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation (pp. 333–363). Studies in Computational Intelligence: Vol. 447. Springer Berlin Heidelberg.        
        More details        BibTeX        Full text        DOI    
        Grimme, C., Lepping, J., & Schwiegelshohn, U. (2013). Multi-criteria scheduling: an agent-based approach for expert knowledge integration. Journal of Scheduling, 16(4), 369–383.        
        More details        BibTeX                DOI    
        Grimme, C., & Lepping, J. (2012). An Approach to Instantly Use Single-Objective Results for Multi-objective Evolutionary Combinatorial Optimization. In Hamadi, Y., & Schoenauer, M. (Eds.), Learning and Intelligent Optimization (pp. 396–401). Lecture Notes in Computer Science. Springer Berlin Heidelberg.        
        More details        BibTeX        Full text        DOI    
        Grimme, C., Lepping, J., & Papaspyrou, A. (2012). Parallel Predator-Prey Interaction for Evolutionary Multi-Objective Optimization. Natural Computing, 11(3), 519–533.        
        More details        BibTeX                DOI    
        Grimme, C. (2012). Das Räuber-Beute-Modell für die mehrkriterielle Optimierung — Analyse und Anwendung. at the Technische Universität Dortmund.        
        More details        BibTeX                    
        Grimme, C., Kemmerling, M., & Lepping, J. (2011). An expertise-guided multi-criteria approach to scheduling problems. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 47–48.        
        More details        BibTeX                    
        Grimme, C., & Lepping, J. (2011). Combining basic heuristics for solving multi-objective scheduling problems. In IEEE Symposium on Computational Intelligence in Scheduling (SCIS), 9–16.        
        More details        BibTeX                    
        Grimme, C., & Lepping, J. (2011). Integrating niching into the predator-prey model using epsilon-constraints. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 109–110.        
        More details        BibTeX                    
        Fölling, A., Grimme, C., Lepping, J., & Papaspyrou, A. (2011). Connecting Community-Grids by Supporting Job Negotiation with Co-evolutionary Fuzzy-Systems. Soft Computing — A Fusion of Foundations, Methodologies and Applications, 15(12), 2375–2387.        
        More details        BibTeX                    
        Fölling, A., Grimme, C., Lepping, J., & Papaspyrou, A. (2010). The Gain of Resource Delegation in Distributed Computing Environments. In Schwiegelshohn, U., & Frachtenberg, E. (Eds.), Proceedings of the 15th Workshop on Job Scheduling Strategies for Parallel Processing (pp. 77–92). Lecture Notes in Computer Science. Atlanta (GA), United States: Springer.        
        More details        BibTeX                    
        Grimme, C., Lepping, J., Moreno, P. J., & Papaspyrou, A. (2010). Applying P2P Strategies to Scheduling in Decentralized Grid Computing Infrastructures. In Proceedings of the Sixth International Workshop on Scheduling and Resource Management for Parallel and Distributed Systems, 295–302.        
        More details        BibTeX                    
        Fölling, A., Grimme, C., Lepping, J., & Papaspyrou, A. (2010). Robust Load Delegation in Service Grid Environments. IEEE Transactions on Parallel and Distributed Systems, 21(9), 1304–1316.        
        More details        BibTeX        Full text        DOI    
        Fölling, A., Grimme, C., Lepping, J., & Papaspyrou, A. (2009). Decentralized Grid Scheduling with Evolutionary Fuzzy Systems. In Frachtenberg, E., & Schwiegelshohn, U. (Eds.), Proceedings of the 14th Job Scheduling Strategies for Parallel Processing (pp. 16–36). Lecture Notes in Computer Science: Vol. 5798. Springer.        
        More details        BibTeX                    
        Fölling, A., Grimme, C., Lepping, J., & Papaspyrou, A. (2009). Co-evolving Fuzzy Rule Sets for Job Exchange in Computational Grids. In Proceedings of the International Conference on Fuzzy Systems, Jeju Island, Korea, 1683–1688.        
        More details        BibTeX                    
        Grimme, C., Lepping, J., & Papaspyrou, A. (2009). Adapting to the Habitat: On the Integration of Local Search into the Predator-Prey Model. In Proceedings of the Fifth International Conference on Evolutionary Multi-Criterion Optimization (EMO), 510–524.        
        More details        BibTeX                    
        Fölling, A., Grimme, C., Lepping, J., Papaspyrou, A., & Schwiegelshohn, U. (2009). Competitive Co-evolutionary Learning of Fuzzy Systems for Job Exchange in Computational Grids. Evolutionary Computation, 17(4), 545–560.        
        More details        BibTeX                DOI    
        Grimme, C., & Papaspyrou, A. (2009). Cooperative Negotiation and Scheduling of Scientific Workflows in the Collaborative Climate Community Data and Processing Grid. Future Generation Computer Systems, 25, 301–307.        
        More details        BibTeX                DOI    
        Plantikow, S., Peter, K., Högqvist, M., Grimme, C., & Papaspyrou, A. (2009). Generalizing the Data Management of Three Community Grids. Future Generation Computer Systems, 25, 281–289.        
        More details        BibTeX                DOI    
        Grimme, C., Lepping, J., & Papaspyrou, A. (2008). Prospects of Collaboration between Compute Providers by means of Job Interchange. In Frachtenberg, E., & Schwiegelshohn, U. (Eds.), Proceedings of the 13th Job Scheduling Strategies for Parallel Processing (pp. 132–151). Lecture Notes in Computer Science: Vol. 4942. Springer.        
        More details        BibTeX                    
        Grimme, C., Lepping, J., & Papaspyrou, A. (2008). Benefits of Job Exchange Between Autonomous Sites in Decentralized Computational Grids. In Priol, T., Lefevre, L., & Buyya, R. (Eds.), Proccedings of the 8th IEEE International Symposium on Cluster Computing and the Grid (CCGrid) (pp. 25–32). IEEE Computer Society.        
        More details        BibTeX                    
        Grimme, C., Lepping, J., & Papaspyrou, A. (2008). The Parallel Predator-Prey Model: A Step Towards Practical Application. In Rudolph, G., & others,  (Eds.), Proceedings of the 10th International Conference on Parallel Problem Solving From Nature (PPSN X) (pp. 681–690). Lecture Notes in Computer Science: Vol. 5199. Springer.        
        More details        BibTeX                    
        Grimme, C., Lepping, J., & Papaspyrou, A. (2008). Discovering Performance Bounds for Grid Scheduling by using Evolutionary Multiobjective Optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 1491–1498.        
        More details        BibTeX                    
        Freitag, S., Grimme, C., Papaspyrou, A., & Schley, L. (2007). On the Applicability of OGSA-BES to D-Grid Community Scheduling Systems. In Proceedings of the German E-Science Conference (GES).        
        More details        BibTeX                    
        Grimme, C., Langhammer, T., Papaspyrou, A., & Schintke, F. (2007). Negotiation-based Choreography of Data-intensive Applications in the C3Grid Project. In Proceedings of the German E-Science Conference (GES).        
        More details        BibTeX                    
        Grimme, C., & Lepping, J. (2007). Designing Multi-Objective Variation Operators Using a Predator-Prey Approach. In Proceedings of the Fourth International Conference on Evolutionary Multi-Criterion Optimization, 21–35.        
        More details        BibTeX                    
        Grimme, C., Lepping, J., & Papaspyrou, A. (2007). Exploring the Behavior of Building Blocks for Multi-Objective Variation Operator Design using Predator-Prey Dynamics. In Thierens, D., & others,  (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (pp. 805–812). London: ACM Press.        
        More details        BibTeX                    
        Grimme, C., Lepping, J., & Papaspyrou, A. (2007). Identifying Job Migration Characteristics in Decentralized Grid Scheduling Scenarios. In Zheng, S. (Ed.), Proceedings of the 19th International Conference on Parallel and Distributed Computing and Systems (PDCS) (pp. 124–129). Cambridge (MA), USA: ACTA Press.        
        More details        BibTeX                    
        Grimme, C., Lepping, J., Papaspyrou, A., Wieder, P., Yahyapour, R., Oleksiak, A., Wäldrich, O., & Ziegler, W. (2007). Towards a standards-based Grid Scheduling Architecture.        
        More details        BibTeX                    
        Grimme, C., & Schmitt, K. (2006). Inside a Predator-Prey Model for Multi-Objective Optimization: A Second Study. In H., G. B., & others,  (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (pp. 707–714). New York: ACM Press.        
        More details        BibTeX                    
        Grimme, C. (2005). Räuber-Beute-Systeme für die mehrkriterielle Optimierung.        
        More details        BibTeX