2023

 

Forschungsartikel (Zeitschrift)

Reiner, F., Brandt, M., Tong, X., Skole, D., Kariryaa, A., Ciais, P., Davies, A., Hiernaux, P., Chave, J., Mugabowindekwe, M., Igel, C., Oehmcke, S., Gieseke, F., Li, S., Liu, S., Saatchi, S. S., Boucher, P., Singh, J., Taugourdeau, S., Dendoncker, M., Song, X.-P., Mertz, O., Tucker, C., & Fensholt, R. (2023). More than one quarter of Africa's tree cover is found outside areas previously classified as forest. Nature Communications. (accepted / in press (not yet published))
More details BibTeX

2022

 

Forschungsartikel in Sammelband (Konferenz)

Czarnowski, I., & Martins, D. (2022). Impact of Clustering on a Synthetic Instance Generation in Imbalanced Data Streams Classification. In Groen, D., Mulatier, C., Paszynski, M., Krzhizhanovskaya, V., Dongarra, J., & Sloot, P. (Eds.), Computational Science — {ICCS} 2022 — 22nd International Conference, London, UK, June 21-23, 2022, Proceedings, Part {II} (pp. 586–597). Lecture Notes in Computer Science: Vol. 13351. Cham: Springer.
More details BibTeX Full text DOI

Oehmcke, S., & Gieseke, F. (2022). Input Selection for Bandwidth-Limited Neural Network Inference. In Banerjee, A., Zhou, Z.-H., Papalexakis, E. E., & Riondato, M. (Eds.), Proceedings of the 2022 SIAM International Conference on Data Mining (SDM) (pp. 280–288). USA: Society for Industrial and Applied Mathematics (SIAM).
More details BibTeX DOI

Oehmcke, S., Li, L., Revenga, J., Nord-Larsen, T., Trepekli, K., Gieseke, F., & Igel, C. (2022). Deep Learning Based 3D Point Cloud Regression for Estimating Forest Biomass. In Proceedings of the International Conference on Advances in Geographic Information Systems (SIGSPATIAL), Seattle, Washington. (accepted / in press (not yet published))
More details BibTeX

 

Forschungsartikel (Zeitschrift)

Masolele, R. N., De, S. V., Marcos, D., Verbesselt, J., Gieseke, F., Mulatu, K. A., Moges, Y., Sebrala, H., Martius, C., & Herold, M. (2022). Using high-resolution imagery and deep learning to classify land-use following deforestation: a case study in Ethiopia. GIScience and Remote Sensing, 59(1), 1446–1472.
More details BibTeX DOI

Mugabowindekwe, M., Brandt, M., Chave, J., Reiner, F., Skole, D., Kariryaa, A., Igel, C., Hiernaux, P., Ciais, P., Mertz, O., Tong, X., Li, S., Rwanyiziri, G., Dushimiyimana, T., Ndoli, A., Valens, U., Lillesø, J.-P., Gieseke, F., Tucker, C., Saatchi, S. S., & Fensholt, R. (2022). Nation-wide mapping of tree-level aboveground carbon stocks in Rwanda. Nature Climate Change, 13.
More details BibTeX DOI

Revenga, J. C., Trepekli, K., Oehmcke, S., Jensen, R., Li, L., Igel, C., Gieseke, F., & Friborg, T. (2022). Above-Ground Biomass Prediction for Croplands at a Sub-Meter Resolution Using UAV–LiDAR and Machine Learning Methods. Remote Sensing, 14(16), 3912.
More details BibTeX DOI

 

Forschungsartikel in Online-Sammlung (Konferenz)

Hellweg, T., Oehmcke, S., Kariryaa, A., Gieseke, F., & Igel, C. a. F. G. a. C. I. (2022). Ensemble Learning for Semantic Segmentation of Ancient {Maya} Architectures.
More details Full text

2021

 

Forschungsartikel in Sammelband (Konferenz)

Carvalho, T., Martins, D., & Lima, N. F. (2021). MapView: Exploring Datasets via Unsupervised View Recommendation. In unknown, u., & , (Eds.), {IEEE} Latin American Conference on Computational Intelligence, {LA-CCI} 2021, Temuco, Chile, November 2-4, 2021 (pp. 1–6). Temuco, Chile: IEEE.
More details BibTeX Full text DOI

Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., & Barnard, K. (2021). Attentional Feature Fusion. In Proceedings of the Workshop on Applications of Computer Vision (WACV), Waikoloa, Hawaii, 3559–3568.
More details BibTeX DOI

Munksgaard, P., Breddam, S., Henriksen, T., Gieseke, F., & Oancea, C. E. (2021). Dataset Sensitive Autotuning of Multi-versioned Code Based on Monotonic Properties — Autotuning in Futhark. In Proceedings of the 22nd International Symposium on Trends in Functional Programming (TFP), Virtual Event, 3–23.
More details BibTeX DOI

Oehmcke, S., Nyegaard-Signori, T., Grogan, K., & Gieseke, F. (2021). Estimating Forest Canopy Height With Multi-Spectral and Multi-Temporal Imagery Using Deep Learning. In Proceedings of the IEEE Big Data 2021, Virtual Event. (accepted / in press (not yet published))
More details BibTeX

Silva, R. E., Martins, D., & Lima, N. F. (2021). Automatic Feature Engineering Using Self-Organizing Maps. In Unknown, U., & , (Eds.), {IEEE} Latin American Conference on Computational Intelligence, {LA-CCI} 2021, Temuco, Chile, November 2-4, 2021 (pp. 1–6). Temuco, Chile: IEEE.
More details BibTeX Full text DOI

Silva, R. E., Martins, D., & Lima, N. F. (2021). Self-Organizing Transformations for Automatic Feature Engineering. In unknown, u., & , (Eds.), 2021 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1–7). Orlando: IEEE.
More details BibTeX Full text DOI

 

Abstract in Online-Sammlung (Konferenz)

Lechtenbörger, J. (2021). Infrastructure and lightweight markup language for OER: The case of emacs-reveal (abstract). Poster session presented at the OERxDomains, Online.
More details BibTeX

Revenga, J., Trepekli, K., Oehmcke, S., Gieseke, F., Igel, C., Jensen, R., & Friborg, T. (2021). Prediction of above ground biomass and C-stocks based on UAV-LiDAR multispectral imagery and machine learning methods. Poster session presented at the EGU General Assembly 2021, Virtual Event.
More details BibTeX DOI

 

Forschungsartikel (Zeitschrift)

Masolele, R. N., De, S. V., Herold, M., Marcosa, D., Verbesselt, J., Gieseke, F., Mullissa, A. G., & Martius, C. (2021). Spatial and temporal deep learning methods for deriving land-use following deforestation: A pan-tropical case study using Landsat time series. Remote Sensing of Environment, 264, 112600.
More details BibTeX DOI

2020

 

Forschungsartikel in Sammelband (Konferenz)

Dai, Y., Oehmcke, S., Gieseke, F., Wu, Y., & Barnard, K. (2020). Attention as Activation. In Proceedings of the 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 9156–9163.
More details BibTeX DOI

Gieseke, F., Rosca, S., Henriksen, T., Verbesselt, J., & Oancea, C. (2020). Massively-Parallel Change Detection for Satellite Time Series Data with Missing Values. In Proceedings of the International Conference on Data Engineering (ICDE), Dallas, USA, 385–396.
More details BibTeX DOI

Oancea, C. E., Robroek, T., & Gieseke, F. (2020). Approximate Nearest-Neighbour Fields via Massively-Parallel Propagation-Assisted K-D Trees. In Proceedings of the IEEE International Conference on Big Data, Atlanta, GA, USA, 5172–5181.
More details BibTeX DOI

Oehmcke, S., Tzu-Hsin, K. C., Prishchepov, A. V., & Gieseke, F. (2020). Creating Cloud-Free Satellite Imagery from Image Time Series with Deep Learning. In Proceedings of the 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data (BigSpatial 2020), Seattle, USA, 3:1-3:10.
More details BibTeX DOI

 

Forschungsartikel (Zeitschrift)

Brandt, M., Tucker, C., Kariryaa, A., Rasmussen, K., Abel, C., Small, J., Chave, J., Rasmussen, L., Hiernaux, P., Diouf, A., Kergoat, L., Mertz, O., Igel, C., Gieseke, F., Schöning, J., Li, S., Melocik, K., Meyer, J., SinnoS, , Romero, E., Glennie, E., Montagu, A., Dendoncker, M., & Fensholt, R. (2020). An unexpectedly large count of trees in the West African Sahara and Sahel. Nature, 2020.
More details BibTeX DOI

Hamunyela, E., Rosca, S., Mirt, A., Engle, E., Herold, M., Gieseke, F., & Verbesselt, J. (2020). Implementation of BFASTmonitor Algorithm on Google Earth Engine to Support Large-Area and Sub-Annual Change Monitoring Using Earth Observation Data. Remote Sensing, 12(18).
More details BibTeX DOI

2019

 

Forschungsartikel in Sammelband (Konferenz)

Ko, V., Oehmcke, S., & Gieseke, F. (2019). Magnitude and Uncertainty Pruning Criterion for Neural Networks. In Proceedings of the IEEE International Conference on Big Data, Los Angeles, USA, 2317–2326.
More details BibTeX Full text DOI

Oehmcke, S., Thrysøe, C., Borgstad, A., Salles, M., Brandt, M., & Gieseke, F. (2019). Detecting Hardly Visible Roads in Low-Resolution Satellite Time Series Data. In Proceedings of the International Conference on Big Data, Los Angeles, USA, 2403–2412.
More details BibTeX Full text DOI

2018

 

Forschungsartikel in Sammelband (Konferenz)

Gieseke, F., & Igel, C. (2018). Training Big Random Forests with Little Resources. In Guo, Y., & Farooq, F. (Eds.), Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018 (pp. 1445–1454). ACM.
More details BibTeX Full text DOI

Gieseke, F., Oancea, C., Mahabal, A., Igel, C., & Heskes, T. (2018). Bigger Buffer k-d Trees on Multi-Many-Core Systems. In Senger, H., Marques, O., Garcia, R., Brito, T., Iope, R., Stanzani, S., & Costa, V. (Eds.), High Performance Computing for Computational Science — VECPAR 2018 — 13th International Conference, São Pedro, Brazil, September 17-19, 2018, Revised Selected Papers (pp. 202–214). Lecture Notes in Computer Science: Vol. 11333. Springer.
More details BibTeX Full text DOI

Mehren, M., Gieseke, F., Verbesselt, J., Rosca, S., Horion, S., & Zeileis, A. (2018). Massively-parallel break detection for satellite data. In Sacharidis, D., Gamper, J., & Böhlen, M. (Eds.), Proceedings of the 30th International Conference on Scientific and Statistical Database Management, SSDBM 2018, Bozen-Bolzano, Italy, July 09-11, 2018 (pp. 5:1-5:10). ACM.
More details BibTeX Full text DOI

 

Forschungsartikel (Zeitschrift)

D'Isanto, A., Cavuoti, S., Gieseke, F., & Polsterer, K. (2018). Return of the features — Efficient feature selection and interpretation for photometric redshifts. Astronomy & Astrophysics, 616, A97.
More details BibTeX DOI

Florea, C., & Gieseke, F. (2018). Artistic movement recognition by consensus of boosted SVM based experts. Journal of Visual Communication and Image Representation, 56, 220–233.
More details BibTeX Full text DOI

2017

 

Forschungsartikel in Sammelband (Konferenz)

Florea, C., Toca, C., & Gieseke, F. (2017). Artistic Movement Recognition by Boosted Fusion of Color Structure and Topographic Description. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Santa Rosa, CA, USA, 569–577.
More details BibTeX Full text DOI

Gieseke, F., Polsterer, K., Mahabal, A., Igel, C., & Heskes, T. (2017). Massively-parallel best subset selection for ordinary least-squares regression. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence, Honolulu, HI, USA, 1–8.
More details BibTeX Full text DOI

Mahabal, A., Sheth, K., Gieseke, F., Pai, A., Djorgovski, S., Drake, A., & Graham, M. (2017). Deep-learnt classification of light curves. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence, Honolulu, HI, USA, 1–8.
More details BibTeX Full text DOI

 

Forschungsartikel (Zeitschrift)

Beck, R., Lin, C., Ishida, E., Gieseke, F., Souza, R., Costa-Duarte, M., Hattab, M., & Krone-Martins, A. (2017). On the realistic validation of photometric redshifts. Monthly Notices of the Royal Astronomical Society (MNRAS), 468(4), 4323–4339.
More details BibTeX DOI

Gieseke, F., Bloemen, S., Bogaard, C., Heskes, T., Kindler, J., Scalzo, R., Ribeiro, V., Roestel, J., Groot, P., Yuan, F., Möller, A., & Tucker, B. (2017). Convolutional Neural Networks for Transient Candidate Vetting in Large-Scale Surveys. Monthly Notices of the Royal Astronomical Society (MNRAS), 472(3), 3101–3114.
More details BibTeX DOI

Gieseke, F., Oancea, C., & Igel, C. (2017). bufferkdtree: A Python library for massive nearest neighbor queries on multi-many-core devices. Knowledge Based Systems, 120, 1–3.
More details BibTeX Full text DOI

Kremer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K., & Igel, C. (2017). Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy. IEEE Intelligent Systems, 32(2), 16–22.
More details BibTeX Full text DOI

Souza, R., Dantas, M., Costa-Duarte, M., Feigelson, E., Killedar, M., Lablanche, P., Vilalta, R., Krone-Martins, A., Beck, R., & Gieseke, F. (2017). A probabilistic approach to emission-line galaxy classification. Monthly Notices of the Royal Astronomical Society (MNRAS), 472(3).
More details BibTeX DOI

Stensbo-Smidt, K., Gieseke, F., Zirm, A., Pedersen, K., & Igel, C. (2017). Sacrificing information for the greater good: how to select photometric bands for optimal accuracy. Monthly Notices of the Royal Astronomical Society (MNRAS), 464(3), 2577–2596.
More details BibTeX DOI

2016

 

Forschungsartikel in Sammelband (Konferenz)

Ishida, E., Sasdelli, M., Vilalta, R., Aguena, M., Busti, V., Camacho, H., Trindade, A., Gieseke, F., Souza, R., Fantaye, Y., & Mazzali, P. (2016). Exploring the spectroscopic diversity of type Ia supernovae with Deep Learning and Unsupervised Clustering. In Brescia, M., Djorgovski, S., Feigelson, E., Longo, G., & Cavuoti, S. (Eds.), Proceedings of the International Astronomical Union (pp. 247–252). Proceedings of the International Astronomical Union: Vol. 12. Cambridge University Press.
More details BibTeX Full text DOI

Polsterer, K., Gieseke, F., Igel, C., Doser, B., & Gianniotis, N. (2016). Parallelized rotation and flipping INvariant Kohonen maps (PINK) on GPUs. In Proceedings of the 24th European Symposium on Artificial Neural Networks, Bruges, Belgium.
More details BibTeX Full text

 

Forschungsartikel (Zeitschrift)

Sasdelli, M., Ishida, E., Vilalta, R., Aguena, M., Busti, V., Camacho, H., Trindade, A., Gieseke, F., Souza, R., Fantaye, Y., & Mazzali, P. (2016). Exploring the spectroscopic diversity of type Ia supernovae with DRACULA: A machine learning approach. Monthly Notices of the Royal Astronomical Society (MNRAS), 461(2), 2044–2059.
More details BibTeX DOI

2015

 

Forschungsartikel in Sammelband (Konferenz)

Gieseke, F. (2015). An Efficient Many-Core Implementation for Semi-Supervised Support Vector Machines. In Pardalos, P., Pavone, M., Farinella, G., & Cutello, V. (Eds.), Machine Learning, Optimization, and Big Data — First International Workshop, MOD 2015, Taormina, Sicily, Italy, July 21-23, 2015, Revised Selected Papers (pp. 145–157). Lecture Notes in Computer Science: Vol. 9432. Springer.
More details BibTeX Full text DOI

Gieseke, F., Pahikkala, T., & Heskes, T. (2015). Batch Steepest-Descent-Mildest-Ascent for Interactive Maximum Margin Clustering. In Fromont, B. T., & Leeuwen, M. (Eds.), Advances in Intelligent Data Analysis XIV — 14th International Symposium, IDA 2015, Saint Etienne, France, October 22-24, 2015, Proceedings (pp. 95–107). Lecture Notes in Computer Science: Vol. 9385. Springer.
More details BibTeX Full text DOI

 

Forschungsartikel (Zeitschrift)

Kremer, J., Gieseke, F., Pedersen, K., & Igel, C. (2015). Nearest Neighbor Density Ratio Estimation for Large-Scale Applications in Astronomy. Astronomy and Computing, 12, 62–72.
More details BibTeX DOI

2014

 

Forschungsartikel in Sammelband (Konferenz)

Gieseke, F., Heinermann, J., Oancea, C., & Igel, C. (2014). Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs. In Proceedings of the 31th International Conference on Machine Learning, Beijing, China, 172–180.
More details BibTeX Full text

Gieseke, F., Polsterer, K., Oancea, C., & Igel, C. (2014). Speedy greedy feature selection: Better redshift estimation via massive parallelism. In Proceedings of the 22th European Symposium on Artificial Neural Networks, Bruges, Belgium.
More details BibTeX Full text

Kramer, O., Gieseke, F., Heinermann, J., Poloczek, J., & Treiber, N. (2014). A Framework for Data Mining in Wind Power Time Series. In Woon, W., Aung, Z., & Madnick, S. (Eds.), Data Analytics for Renewable Energy Integration — Second ECML PKDD Workshop, DARE 2014, Nancy, France, September 19, 2014, Revised Selected Papers (pp. 97–107). Lecture Notes in Computer Science: Vol. 8817. Springer.
More details BibTeX Full text DOI

 

Forschungsartikel (Zeitschrift)

Gieseke, F., Airola, A., Pahikkala, T., & Kramer, O. (2014). Fast and simple gradient-based optimization for semi-supervised support vector machines. Neurocomputing, 123, 23–32.
More details BibTeX Full text DOI

Pahikkala, T., Airola, A., Gieseke, F., & Kramer, O. (2014). On Unsupervised Training of Multi-Class Regularized Least-Squares Classifiers. Journal of Computer Science and Technology (ICDM 2012 Special Issue), 29(1), 90–104.
More details BibTeX Full text DOI

2013

 

Forschungsartikel in Sammelband (Konferenz)

Gieseke, F., & Kramer, O. (2013). Towards Non-linear Constraint Estimation for Expensive Optimization. In Esparcia{-}Alc{á}zar, A. (Ed.), Applications of Evolutionary Computation — 16th European Conference, EvoApplications 2013, Vienna, Austria, April 3-5, 2013. Proceedings (pp. 459–468). Lecture Notes in Computer Science: Vol. 7835. Springer.
More details BibTeX Full text DOI

Gieseke, F., Pahikkala, T., & Igel, C. (2013). Polynomial Runtime Bounds for Fixed-Rank Unsupervised Least-Squares Classification. In Ong, C., & Ho, T. (Eds.), Asian Conference on Machine Learning, ACML 2013, Canberra, ACT, Australia, November 13-15, 2013 (pp. 62–71). JMLR Workshop and Conference Proceedings: Vol. 29. JMLR.org.
More details BibTeX Full text

Heinermann, J., Kramer, O., Polsterer, K., & Gieseke, F. (2013). On GPU-Based Nearest Neighbor Queries for Large-Scale Photometric Catalogs in Astronomy. In Timm, I., & Thimm, M. (Eds.), KI 2013: Advances in Artificial Intelligence — 36th Annual German Conference on AI, Koblenz, Germany, September 16-20, 2013. Proceedings (pp. 86–97). Lecture Notes in Computer Science: Vol. 8077. Springer.
More details BibTeX Full text DOI

Kramer, O., Treiber, N., & Gieseke, F. (2013). Support Vector Machines for Wind Energy Prediction in Smart Grids. In Page, B., Fleischer, A., Göbel, J., & Wohlgemuth, V. (Eds.), 27th International Conference on Environmental Informatics for Environmental Protection, Sustainable Development and Risk Management, EnviroInfo 2013, Hamburg, Germany, September 2-4, 2013. Proceedings (pp. 16–24). Shaker.
More details BibTeX Full text

 

Forschungsartikel (Zeitschrift)

Gieseke, F. (2013). From Supervised to Unsupervised Support Vector Machines and Applications in Astronomy. KI, 27(3), 281–285.
More details BibTeX Full text DOI

Gieseke, F. (2013). Von überwachten zu unüberwachten Support-Vektor-Maschinen und Anwendungen in der Astronomie. Ausgezeichnete Informatikdissertationen 2012, D-13, 111–120.
More details BibTeX

Kramer, O., Gieseke, F., & Polsterer, K. (2013). Learning morphological maps of galaxies with unsupervised regression. Expert Systems with Applications, 40(8), 2841–2844.
More details BibTeX Full text DOI

Kramer, O., Gieseke, F., & Satzger, B. (2013). Wind energy prediction and monitoring with neural computation. Neurocomputing, 109, 84–93.
More details BibTeX Full text DOI

Polsterer, K., Zinn, P., & Gieseke, F. (2013). Finding New High-Redshift Quasars by Asking the Neighbours. Monthly Notices of the Royal Astronomical Society (MNRAS), 428(1), 226–235.
More details BibTeX DOI

2012

 

Forschungsartikel in Sammelband (Konferenz)

Gieseke, F., Airola, A., Pahikkala, T., & Kramer, O. (2012). Sparse Quasi-Newton Optimization for Semi-supervised Support Vector Machines. In Carmona, P., Sánchez, J., & Fred, A. (Eds.), ICPRAM 2012 — Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods, Volume 1, Vilamoura, Algarve, Portugal, 6-8 February, 2012 (pp. 45–54). SciTePress.
More details BibTeX

Pahikkala, T., Airola, A., Gieseke, F., & Kramer, O. (2012). Unsupervised Multi-class Regularized Least-Squares Classification. In Zaki, M., Siebes, A., Yu, J., Goethals, B., Webb, G., & Wu, X. (Eds.), 12th IEEE International Conference on Data Mining, ICDM 2012, Brussels, Belgium, December 10-13, 2012 (pp. 585–594). IEEE Computer Society.
More details BibTeX Full text DOI

 

Forschungsartikel (Zeitschrift)

Gieseke, F., Kramer, O., Airola, A., & Pahikkala, T. (2012). Efficient recurrent local search strategies for semi- and unsupervised regularized least-squares classification. Evolutionary Intelligence, 5(3), 189–205.
More details BibTeX Full text DOI

Gieseke, F., Moruz, G., & Vahrenhold, J. (2012). Resilient k-d trees: k-means in space revisited. Frontiers of Computer Science (ICDM 2010 Special Issue), 6(2), 166–178.
More details BibTeX Full text DOI

Kramer, O., & Gieseke, F. (2012). Evolutionary kernel density regression. Expert Systems and Applications, 39(10), 9246–9254.
More details BibTeX Full text DOI

 

Qualifikationsschrift (Dissertation, Habilitationsschrift)

Gieseke, F. (2012). From supervised to unsupervised support vector machines and applications in astronomy. at the Carl von Ossietzky University of Oldenburg.
More details BibTeX Full text

2011

 

Forschungsartikel in Sammelband (Konferenz)

Gieseke, F., Kramer, O., Airola, A., & Pahikkala, T. (2011). Speedy Local Search for Semi-Supervised Regularized Least-Squares. In Bach, J., & Edelkamp, S. (Eds.), KI 2011: Advances in Artificial Intelligence, 34th Annual German Conference on AI, Berlin, Germany, October 4-7,2011. Proceedings (pp. 87–98). Lecture Notes in Computer Science: Vol. 7006. Springer.
More details BibTeX Full text DOI

Kramer, O., & Gieseke, F. (2011). Analysis of wind energy time series with kernel methods and neural networks. In Ding, Y., Wang, H., Xiong, N., Hao, K., & Wang, L. (Eds.), Seventh International Conference on Natural Computation, ICNC 2011, Shanghai, China, 26-28 July, 2011 (pp. 2381–2385). IEEE.
More details BibTeX Full text DOI

Kramer, O., & Gieseke, F. (2011). Variance Scaling for EDAs Revisited. In Bach, J., & Edelkamp, S. (Eds.), KI 2011: Advances in Artificial Intelligence, 34th Annual German Conference on AI, Berlin, Germany, October 4-7,2011. Proceedings (pp. 169–178). Lecture Notes in Computer Science: Vol. 7006. Springer.
More details BibTeX Full text DOI

Kramer, O., & Gieseke, F. (2011). Short-Term Wind Energy Forecasting Using Support Vector Regression. In Corchado, E., Sn{á}sel, V., Sedano, J., Hassanien, A., Calvo{-}Rolle, J., & Slezak, D. (Eds.), Soft Computing Models in Industrial and Environmental Applications, 6th International Conference {SOCO} 2011, 6-8 April, 2011, Salamanca, Spain (pp. 271–280). Advances in Intelligent and Soft Computing: Vol. 87. Springer.
More details BibTeX Full text DOI

2010

 

Forschungsartikel in Sammelband (Konferenz)

Gieseke, F., Moruz, G., & Vahrenhold, J. (2010). Resilient K-d Trees: K-Means in Space Revisited. In Proceedings of the 10th IEEE International Conference on Data Mining (ICDM), Sydney, Australia, 815–820.
More details BibTeX DOI

Gieseke, F., Polsterer, K., Thom, A., Zinn, P., Bomans, D., Dettmar, R.-J., Kramer, O., & Vahrenhold, J. (2010). Detecting Quasars in Large-Scale Astronomical Surveys. In Proceedings of the 9th International Conference on Machine Learning and Applications (ICMLA), Washington D.C., USA, 352–357.
More details BibTeX DOI

 

Forschungsartikel (Zeitschrift)

Gieseke, F., Gudmundsson, J., & Vahrenhold, J. (2010). Pruning Spanners and Constructing Well-Separated Pair Decompositions in the Presence of Memory Hierarchies. Journal of Discrete Algorithms (JDA), 8(3), 259–272.
More details BibTeX DOI

2009

 

Forschungsartikel in Sammelband (Konferenz)

Gieseke, F., Pahikkala, T., & Kramer, O. (2009). Fast evolutionary maximum margin clustering. In Proceedings of the 26th International Conference on Machine Learning (ICML 2009), Montreal, Canada, 361–368.
More details BibTeX Full text DOI