Massively-parallel best subset selection for ordinary least-squares regression

Gieseke F, Polsterer KL, Mahabal A, Igel C, Heskes T

Cite as

Gieseke, F., Polsterer, K., Mahabal, A., Igel, C., & Heskes, T. (2017). Massively-parallel best subset selection for ordinary least-squares regression. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence, Honolulu, HI, USA, 1–8.

Details

Publication type
Research article in proceedings (conference)

Peer reviewed
Yes

Publication status
Published

Year
2017

Conference
2017 IEEE Symposium Series on Computational Intelligence

Venue
Honolulu, HI, USA

Book title
2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017, Honolulu, HI, USA, November 27 - Dec. 1, 2017

Start page
1

End page
8

Publisher
IEEE

Language
English

DOI

Full text