Research article in proceedings (conference)
    
    
        Florea, C., Toca, C., & Gieseke, F. (2017). Artistic Movement Recognition by Boosted Fusion of Color Structure and Topographic Description. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Santa Rosa, CA, USA, 569–577.        
        More details        BibTeX        Full text        DOI    
    @inproceedings{FloreaTG2017ArtisticMovement,
  author = {C Florea and C Toca and F Gieseke},
  title = {Artistic Movement Recognition by Boosted Fusion of Color Structure and Topographic Description},
  booktitle = {2017 IEEE Winter Conference on Applications of Computer Vision, WACV 2017, Santa Rosa, CA, USA, March 24-31, 2017},
  pages = {569--577},
  year = {2017},
  publisher = {IEEE Computer Society},
  address = {Santa Rosa, CA, USA},
  doi = {10.1109/WACV.2017.69},
  url = {https://doi.org/10.1109/WACV.2017.69},
  note = {Publication status: Published}
}      
    
        Gieseke, F., Polsterer, K., Mahabal, A., Igel, C., & Heskes, T. (2017). Massively-parallel best subset selection for ordinary least-squares regression. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence, Honolulu, HI, USA, 1–8.        
        More details        BibTeX        Full text        DOI    
    @inproceedings{GiesekePMIH2017MassivelyParallel,
  author = {F Gieseke and KL Polsterer and A Mahabal and C Igel and T Heskes},
  title = {Massively-parallel best subset selection for ordinary least-squares regression},
  booktitle = {2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017, Honolulu, HI, USA, November 27 --- Dec. 1, 2017},
  pages = {1--8},
  year = {2017},
  publisher = {IEEE},
  address = {Honolulu, HI, USA},
  doi = {10.1109/SSCI.2017.8285225},
  url = {https://doi.org/10.1109/SSCI.2017.8285225},
  note = {Publication status: Published}
}      
    
        Mahabal, A., Sheth, K., Gieseke, F., Pai, A., Djorgovski, S., Drake, A., & Graham, M. (2017). Deep-learnt classification of light curves. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence, Honolulu, HI, USA, 1–8.        
        More details        BibTeX        Full text        DOI    
    @inproceedings{MahabalSGPDDG2017DeepLearnt,
  author = {A Mahabal and K Sheth and F Gieseke and A Pai and SG Djorgovski and AJ Drake and MJ Graham},
  title = {Deep-learnt classification of light curves},
  booktitle = {2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017, Honolulu, HI, USA, November 27 --- Dec. 1, 2017},
  pages = {1--8},
  year = {2017},
  publisher = {IEEE},
  address = {Honolulu, HI, USA},
  doi = {10.1109/SSCI.2017.8280984},
  url = {https://doi.org/10.1109/SSCI.2017.8280984},
  note = {Publication status: Published}
}      
 
    Research article (journal)
    
    
        Beck, R., Lin, C., Ishida, E., Gieseke, F., Souza, R., Costa-Duarte, M., Hattab, M., & Krone-Martins, A. (2017). On the realistic validation of photometric redshifts. Monthly Notices of the Royal Astronomical Society (MNRAS), 468(4), 4323–4339.        
        More details        BibTeX                DOI    
    @article{BeckLIGSCDHKM2017OnTheRealistic,
  author = {R Beck and CA Lin and EO Ishida and F Gieseke and RS Souza and MV Costa-Duarte and MW Hattab and A Krone-Martins},
  title = {On the realistic validation of photometric redshifts},
  journal = {Monthly Notices of the Royal Astronomical Society (MNRAS)},
  year = {2017},
  volume = {468},
  number = {4},
  pages = {4323--4339},
  doi = {10.1093/mnras/stx687},
  note = {Publication status: Published}
}      
    
        Gieseke, F., Bloemen, S., Bogaard, C., Heskes, T., Kindler, J., Scalzo, R., Ribeiro, V., Roestel, J., Groot, P., Yuan, F., Möller, A., & Tucker, B. (2017). Convolutional Neural Networks for Transient Candidate Vetting in Large-Scale Surveys. Monthly Notices of the Royal Astronomical Society (MNRAS), 472(3), 3101–3114.        
        More details        BibTeX                DOI    
    @article{GiesekeBBHKSRRGYMT2017Convolutional,
  author = {F Gieseke and S Bloemen and C Bogaard and T Heskes and J Kindler and RA Scalzo and VA Ribeiro and J Roestel and PJ Groot and F Yuan and A Möller and BE Tucker},
  title = {Convolutional Neural Networks for Transient Candidate Vetting in Large-Scale Surveys},
  journal = {Monthly Notices of the Royal Astronomical Society (MNRAS)},
  year = {2017},
  volume = {472},
  number = {3},
  pages = {3101--3114},
  doi = {10.1093/mnras/stx2161},
  note = {Publication status: Published}
}      
    
        Gieseke, F., Oancea, C., & Igel, C. (2017). bufferkdtree: A Python library for massive nearest neighbor queries on multi-many-core devices. Knowledge Based Systems, 120, 1–3.        
        More details        BibTeX        Full text        DOI    
    @article{GiesekeOI2017Bufferkdtree,
  author = {F Gieseke and CE Oancea and C Igel},
  title = {bufferkdtree: A Python library for massive nearest neighbor queries on multi-many-core devices},
  journal = {Knowledge Based Systems},
  year = {2017},
  volume = {120},
  pages = {1--3},
  doi = {10.1016/j.knosys.2017.01.002},
  url = {https://doi.org/10.1016/j.knosys.2017.01.002},
  note = {Publication status: Published}
}      
    
        Kremer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K., & Igel, C. (2017). Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy. IEEE Intelligent Systems, 32(2), 16–22.        
        More details        BibTeX        Full text        DOI    
    @article{KremerSSGPI2017BigUniverse,
  author = {J Kremer and K Stensbo-Smidt and F Gieseke and KS Pedersen and C Igel},
  title = {Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy},
  journal = {IEEE Intelligent Systems},
  year = {2017},
  volume = {32},
  number = {2},
  pages = {16--22},
  doi = {10.1109/MIS.2017.40},
  url = {https://doi.org/10.1109/MIS.2017.40},
  note = {Publication status: Published}
}      
    
        Souza, R., Dantas, M., Costa-Duarte, M., Feigelson, E., Killedar, M., Lablanche, P., Vilalta, R., Krone-Martins, A., Beck, R., & Gieseke, F. (2017). A probabilistic approach to emission-line galaxy classification. Monthly Notices of the Royal Astronomical Society (MNRAS), 472(3).        
        More details        BibTeX                DOI    
    @article{SouzaDCDFKLVKMBG2017AProbabilistic,
  author = {RS Souza and MLL Dantas and MV Costa-Duarte and ED Feigelson and M Killedar and P Lablanche and R Vilalta and A Krone-Martins and R Beck and F Gieseke},
  title = {A probabilistic approach to emission-line galaxy classification},
  journal = {Monthly Notices of the Royal Astronomical Society (MNRAS)},
  year = {2017},
  volume = {472},
  number = {3},
  doi = {10.1093/mnras/stx2156},
  note = {Publication status: Published}
}      
    
        Stensbo-Smidt, K., Gieseke, F., Zirm, A., Pedersen, K., & Igel, C. (2017). Sacrificing information for the greater good: how to select photometric bands for optimal accuracy. Monthly Notices of the Royal Astronomical Society (MNRAS), 464(3), 2577–2596.        
        More details        BibTeX                DOI    
    @article{StensboSmidtGZPI2017Sacrificing,
  author = {K Stensbo-Smidt and F Gieseke and A Zirm and KS Pedersen and C Igel},
  title = {Sacrificing information for the greater good: how to select photometric bands for optimal accuracy},
  journal = {Monthly Notices of the Royal Astronomical Society (MNRAS)},
  year = {2017},
  volume = {464},
  number = {3},
  pages = {2577--2596},
  doi = {10.1093/mnras/stw2476},
  note = {Publication status: Published}
}