• 2019

    Conference Paper

    Bossek, J., & Grimme, C. (2019). Solving Scalarized Subproblems within Evolutionary Algorithms for Multi-Criteria Shortest Path Problems. In Battiti, R., Brunato, M., Kotsireas, I., & Pardalos, P. (Eds.), Learning and Intelligent Optimization (pp. 184–198). Lecture Notes in Computer Science: Vol. 11353. Cham: Springer.
    More details BibTeX DOI

    Bossek, J., Grimme, C., & Neumann, F. (2019). On the Benefits of Biased Edge-Exchange Mutation for the Multi-Criteria Spanning Tree Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '19), Prague, Czech Republic. (Accepted)
    More details BibTeX

    Bossek, J., Neumann, F., Peng, P., & Sudholt, D. (2019). Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '19), Prague, Czech Republic. (Accepted)
    More details BibTeX

    Bossek, J., & Trautmann, H. (2019). Multi-Objective Performance Measurement: Alternatives to PAR10 and Expected Running Time. In Battiti, R., Brunato, M., Kotsireas, I., & Pardalos, P. (Eds.), Learning and Intelligent Optimization (pp. 215–219). Lecture Notes in Computer Science: Vol. 11353. Cham: Springer.
    More details BibTeX

    Bossek, J., Grimme, C., Meisel, S., Rudolph, G., & Trautmann, H. (2019). Bi-Objective Orienteering: Towards a Dynamic Multi-Objective Evolutionary Algorithm. In Deb, K., Goodman, E., Coello, C. C. A., Klamroth, K., Miettinen, K., Mostaghim, S., & Reed, P. (Eds.), Evolutionary Multi-Criterion Optimization (EMO) (pp. 516–528). Lecture Notes in Computer Science: Vol. 11411. Springer International Publishing.
    More details BibTeX DOI

    Bossek, J., Kerschke, P., Neumann, A., Wagner, M., Neumann, F., & Trautmann, H. (2019). Evolving Diverse TSP Instances by Means of Novel and Creative Mutation Operators. In Proceedings of the 15th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA XV), Potsdam, Germany. (Accepted)
    More details BibTeX

    Bossek, J., & Sudholt, D. (2019). Time Complexity Analysis of RLS and (1+1) EA for the Edge Coloring Problem. In Proceedings of the 15th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA XV), Potsdam, Germany. (Accepted)
    More details BibTeX

  • 2018

    Article in Journal

    Bossek, J. (2018). grapherator: A Modular Multi-Step Graph Generator. The Journal of Open Source Software, 2018.
    More details BibTeX

    Kerschke, P., Kotthoff, L., Bossek, J., Hoos, H. H., & Trautmann, H. (2018). Leveraging TSP Solver Complementarity through Machine Learning. Evolutionary Computation (ECJ), 26(4), 597–620.
    More details BibTeX Full text DOI

    Conference Paper

    Bossek, J. (2018). Performance Assessment of Multi-Objective Evolutionary Algorithms With the R Package ecr. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '18) Companion, Kyoto, Japan, 1350–1356.
    More details BibTeX DOI

    Bossek, J., Grimme, C., Meisel, S., Rudolph, G., & Trautmann, H. (2018). Local Search Effects in Bi-Objective Orienteering. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '18), Kyoto, Japan, 585–592.
    More details BibTeX DOI

    Kerschke, P., Bossek, J., & Trautmann, H. (2018). Parameterization of State-of-the-Art Performance Indicators: A Robustness Study Based on Inexact TSP Solvers. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '18) Companion, Kyoto, Japan, 1737–1744.
    More details BibTeX Full text DOI

    Book (Monography)

    Grimme, C., & Bossek, J. (2018). Einführung in die Optimierung — Konzepte, Methoden und Anwendungen (1st ed.). Springer Vieweg.
    More details BibTeX DOI

    Thesis

    Bossek, J. (2018). Investigating Problem Hardness in (Multi-Objective) Combinatorial Optimization: Algorithm Selection, Instance Generation and Tailored Algorithm Design. Dissertation at the Universität Münster. (In press)
    More details BibTeX

  • 2017

    Article in Journal

    Bossek, J. (2017). mcMST: A Toolbox for the Multi-Criteria Minimum Spanning Tree Problem. The Journal of Open Source Software, 2017.
    More details BibTeX DOI

    Bossek, J. (2017). smoof: Single- and Multi-Objective Optimization Test Functions. The R Journal, 2017(1), 103–113.
    More details BibTeX Full text

    Casalicchio, G., Bossek, J., Lang, M., Kirchhoff, D., Kerschke, P., Hofner, B., Seibold, H., Vanschoren, J., & Bischl, B. (2017). OpenML: An R package to connect to the machine learning platform OpenML. Computational Statistics, 2017, 1–15.
    More details BibTeX Full text DOI

    Conference Paper

    Bossek, J., & Grimme, C. (2017). An Extended Mutation-Based Priority-Rule Integration Concept for Multi-Objective Machine Scheduling. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Honolulu, Hawaii.
    More details BibTeX DOI

    Bossek, J., & Grimme, C. (2017). A Pareto-Beneficial Sub-Tree Mutation for the Multi-Criteria Minimum Spanning Tree Problem. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Honolulu, Hawai, 3280–3287.
    More details BibTeX DOI

    Bossek, J. (2017). ecr 2.0: A Modular Framework for Evolutionary Computation in R. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '17) Companion, Berlin, Germany.
    More details BibTeX DOI

    Other

    Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., & Lang, M. (2017). mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions.
    More details BibTeX Full text

    Casalicchio, G., Bossek, J., Lang, M., Kirchhoff, D., Kerschke, P., Hofner, B., Seibold, H., Vanschoren, J., & Bischl, B. (2017). OpenML: An R Package to Connect to the Networked Machine Learning Platform OpenML.
    More details BibTeX Full text DOI

  • 2016

    Conference Paper

    Bossek, J., & Trautmann, H. (2016). Evolving Instances for Maximizing Performance Differences of State-of-The-Art Inexact TSP Solvers. In Festa, P., Sellmann, M., & Vanschoren, J. (Eds.), Learning and Intelligent Optimization (pp. 48–59). Lecture Notes in Computer Science: Vol. 10079. Springer International Publishing.
    More details BibTeX DOI

    Bossek, J., & Trautmann, H. (2016). Understanding Characteristics of Evolved Instances for State-of-the-Art Inexact TSP Solvers with Maximum Performance Difference. In Adorni, G., Cagnoni, S., Gori, M., & Maratea, M. (Eds.), AI*IA 2016 Advances in Artificial Intelligence (pp. 3–12). Lecture Notes in Computer Science: Vol. 10037. Cham: Springer.
    More details BibTeX DOI

  • 2015

    Conference Paper

    Bossek, J., Bischl, B., Wagner, T., & Rudolph, G. (2015). Learning Feature-Parameter Mappings for Parameter Tuning via the Profile Expected Improvement. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '15), Madrid, Spanien.
    More details BibTeX

    Meisel, S., Grimme, C., Bossek, J., Wölck, M., Rudolph, G., & Trautmann, H. (2015). Evaluation of a Multi-Objective EA on Benchmark Instances for Dynamic Routing of a Vehicle. In Proceedings of the Genetic and Evolutionary Computation Conference, Madrid, Spain, 425–432.
    More details BibTeX DOI

  • 2013

    Article in Journal

    Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., & Neumann, F. (2013). A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Annals of Mathematics and Artificial Intelligence (Annals of Mathematics and Artificial Intelligence), 69(2), 151–182.
    More details BibTeX DOI

  • 2012

    Article in Journal

    Mersmann, O., Bischl, B., Bossek, J., Trautmann, H., Wagner, M., & Neumann, F. (2012). Local search and the traveling salesman problem: A feature-based characterization of problem hardness. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)), 7219 LNCS, 115–129.
    More details BibTeX DOI