Neural Networks as Black-Box Benchmark Functions Optimized for Exploratory Landscape Features
Keywords
Exploratory Landscape Analysis; Benchmarking; Instance Generator; Black-Box Continuous Optimization; Neural Networks
Cite as
Prager, P. R. &. D. K. &. S. L. &. S. L. &. B. B. &. K. P. &. T. H. &. M. O. (2023). Neural Networks as Black-Box Benchmark Functions Optimized for Exploratory Landscape Features. In Chicano, F., Friedrich, T., Kötzing, T., & Rothlauf, F. (Eds.), FOGA '23: Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (pp. 129–139). online: ACM Press.Details
Publication type
Research article in proceedings (conference)
Peer reviewed
Yes
Publication status
Published
Year
2023
Conference
17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms
Venue
Potsdam
Book title
FOGA '23: Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms
Editor
Chicano, Francisco; Friedrich, Tobias; Kötzing, Timo; Rothlauf, Franz
Start page
129
End page
139
Publisher
ACM Press
Place
online
DOI
Full text