Neural Networks as Black-Box Benchmark Functions Optimized for Exploratory Landscape Features

Prager Patrick Raphael , Dietrich Konstantin , Schneider Lennart , Schäpermeier Lennart , Bischl Bernd , Kerschke Pascal , Trautmann Heike , Mersmann Olaf

Schlüsselwörter

Exploratory Landscape Analysis; Benchmarking; Instance Generator; Black-Box Continuous Optimization; Neural Networks

Zitieren als

Prager, P. R. &. D. K. &. S. L. &. S. L. &. B. B. &. K. P. &. T. H. &. M. O. (2023). Neural Networks as Black-Box Benchmark Functions Optimized for Exploratory Landscape Features. In Chicano, F., Friedrich, T., Kötzing, T., & Rothlauf, F. (Eds.), FOGA '23: Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (pp. 129–139). online: ACM Press.

Details

Publikationstyp
Forschungsartikel in Sammelband (Konferenz)

Begutachtet
Ja

Publikationsstatus
Veröffentlicht

Jahr
2023

Konferenz
17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms

Konferenzort
Potsdam

Buchtitel
FOGA '23: Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms

Herausgeber
Chicano, Francisco; Friedrich, Tobias; Kötzing, Timo; Rothlauf, Franz

Erste Seite
129

Letzte Seite
139

Verlag
ACM Press

Ort
online

DOI

Gesamter Text