Incremental Machine Learning for Text Classification in Comment Moderation Systems

Wolters, Anna; Müller, Kilian; Riehle, Dennis Maximilian


Zusammenfassung

Over the last decade, researchers presented (semi-)automated comment moderation systems (CMS) based on machine learning (ML) and natural language processing (NLP) techniques to support the identification of hateful and offensive comments in online discussion forums. A common challenge in providing and operating comment moderation systems is the dynamic nature of language. As language evolves over time, continuous performance evaluations and resource-inefficient model retraining are applied to ensure high-quality identification of hate speech in the long-term use of comment moderation systems. To study the potentials of adaptable machine learning models embedded in comment moderation systems, we present an incremental machine learning approach for semi-automated comment moderation systems. This study shows a comparison of incrementally-trained ML models and batch-trained ML models used in comment moderation systems.

Schlüsselwörter
Incremental Learning; Text Classification; Comment Moderation Systems



Publikationstyp
Forschungsartikel in Sammelband (Konferenz)

Begutachtet
Ja

Publikationsstatus
Veröffentlicht

Jahr
2022

Konferenz
4th Multidisciplinary International Symposium on Disinformation in Open Online Media

Konferenzort
Boise, ID

Buchtitel
Disinformation in Open Online Media - 4th Multidisciplinary International Symposium, MISDOOM 2022, Boise, ID, USA, October 11–12, 2022, Proceedings

Herausgeber
Spezzano, Francesca; Amaral, Adriana; Ceolin, Davide; Fazio, Lisa; Serra, Edoardo

Erste Seite
138

Letzte Seite
153

Band
13545

Reihe
Lecture Notes in Computer Science

Verlag
Springer Nature

Ort
Cham

Sprache
Englisch

ISSN
0302-9743

ISBN
978-3-031-18252-5

DOI