A Generic Framework for Collaborative Filtering Based on Social Collective Recommendation

Homann Leschek, Maleszka Bernadetta, Martins Denis, Vossen Gottfried


Zusammenfassung

Collaborative filtering has been considered the most used approach for recommender systems in both practice and research. Unfortunately, traditional collaborative filtering suffers from the so-called cold-start problem, which is the challenge to recommend items for an unknown user. In this paper, we introduce a generic framework for social collective recommendations targeting to support and complement traditional recommender systems to achieve better results. Our framework is composed of three modules, namely, a User Clustering module, a Representative module, and an Adaption module. The User Clustering module aims to find groups of users, the Representative module is responsible for determining a representative of each group, and the Adaption module handles new users and assigns them appropriately. By the composition of the framework, the cold-start problem is alleviated.

Schlüsselwörter
recommendation; collaborative filtering



Publikationstyp
Forschungsartikel in Sammelband (Konferenz)

Begutachtet
Ja

Publikationsstatus
Veröffentlicht

Jahr
2018

Konferenz
International Conference on Computational Collective Intelligence (ICCCI 2018)

Konferenzort
Bristol

Band
11055

Buchtitel
Computational Collective Intelligence

Herausgeber
Ngoc Thanh Nguyen, Elias Pimenidis, Zaheer Khan, Bogdan Trawiński

Erste Seite
238

Letzte Seite
247

Band
11055

Reihe
Lecture Notes in Computer Science

Verlag
Springer International Publishing

Ort
Heidelberg

Sprache
Englisch

ISSN
0302-9743

ISBN
978-3-319-98442-1