2. Zufallsvektoren

- Zufallsvektoren allgemein
- Diskreter Fall
- Multivariate Verteilungsfunktion
- Stetige Zufallsvektoren
- Unabhängigkeit von Zufallsvariablen
- Korrelationskoeffizienten

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

0

2 Zufallsvektoren

2 Wahrscheinlichkeitsrechung - Zufallsvektoren

- \hookrightarrow bisher: Verteilungen einzelner Zufallsvariablen
- → jetzt: Ergebnis eines Zufallsexperimentes sind mehrere Zufallsvariablen

Die Wirtschaftslage am Ende einer Periode wird als Zufallsvorgang betrachtet. Verschiedene statistische Variablen spiegeln die wirtschaftliche Situation wider.

- X: Bruttoinlandsprodukt, Y: Inflationsrate, Z: Arbeitslosenquote
 - → von Interesse sind neben den einzelnen Verteilungen der Zufallsvariablen insbesondere auch die Zusammenhänge
 - \hookrightarrow Bei geeigneter Modellierung liegt allen Zufallsvariablen dieselbe Grundgesamtheit Ω und dasselbe WS-Modell P zugrunde.
- \hookrightarrow Liegt $\omega \in \Omega$ vor, können die Werte der Zufallsvariablen direkt berechnet werden.
- → Zusammenfassung der einzelnen Zufallsvariablen zu einem Zufallsvektor

Memo DuW: Zufallsvariablen

- \hookrightarrow Die von einer statistischen Variablen X erfassten Objektdaten $x=X(\omega)$ sind zufällige Werte. X wird daher auch als Zufallsvariable (ZV) bezeichnet.
- \hookrightarrow Für die Grundgesamtheit Ω liegt ein WS-Modell P vor, das sich auf die mit X erfassten Objektdaten überträgt. Sprechweise: (induzierte) Verteilung von X (Symbol $\mathcal{L}(X)$). Üblich sind folgende Schreibweisen:

()		<u> </u>
Kurzform	ausführlich	Erläuterung
$P(X \in A)$	$P(\{\omega \in \Omega : X(\omega) \in A\})$) durch X induzierte WS von A
P(X = x)	$P(\{\omega \in \Omega : X(\omega) = x\})$) Punkt-Wahrscheinlichkeit
$P(X \in [a; b])$	$P(\{\omega \in \Omega : a \leq X(\omega) \leq X(\omega)\})$	$\{b\}$) Intervallwahrscheinlichkeit
$P(X \leq x)$	$P(\{\omega \in \Omega : X(\omega) \leq x\})$	Verteilungsfunktion (VF) $F_X(x)$ (in x)
$F_X^{-1}(t)$	$\inf\{x\in\mathbb{R}:F_X(x)\geq t\}$	Quantilfunktion (oft Umkehrfunktion von F_X)

- \hookrightarrow Oft wird explizites WS-Modell nicht für Grundgesamtheit, sondern nur für die von X angegebenen (meist reellen) Werte formuliert.
 - \square diskrete ZV mit Dichte $f_X(x_i) = P(X = x_i)$ und $\sum_{i \in \mathbb{N}} P(X = x_i) = 1$
 - \square stetige ZV mit Dichte $f_X(x) = F_X'(x)$ mit VF F_X und $\int_{-\infty}^{\infty} f_X(x) = 1$
- \hookrightarrow Bestimmung von Wahrscheinlichkeiten $P(X \in A)$ im Spezialfall:
 - \square diskret: $P(X \in A) = \sum_{x_i \in A: f_X(x_i) > 0} P(X = x_i)$
 - \square stetig: $P(X \in]a; b]) = \int_a^b f_X(x) dx$ und P(X = b) = 0, $-\infty \le a < b$

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

2

2 Zufallsvektoren

2.1 Zufallsvektoren allgemein

Definition (Zufallsvektor, multivariate Zufallsvariable, MZV)

Gegeben Zufallsvariablen $X_i: \Omega \to \mathbb{R}, i = 1, ..., n$ auf einem WS-Raum (Ω, P) :

- \hookrightarrow Der Vektor $X=(X_1,\ldots,X_n)$ heißt dann **Zufallsvektor**.
- $\hookrightarrow X_1, \dots, X_n$ heißen **Komponenten** des Zufallsvektors.
- $\hookrightarrow X$ ist eine (multivariate) Zufallsvariable (MZV) mit Werten in \mathbb{R}^n und besitzt eine Verteilung .
 - $\mathcal{L}(X)$ wird als **gemeinsame** Verteilung der X_1, \ldots, X_n bezeichnet.
- \hookrightarrow Unter einer k-variaten (bzw. k-dimensionalen) **Randverteilung** versteht man die gemeinsame Verteilung der ZV X_{i_1}, \ldots, X_{i_k} für eine gegebene Wahl von Indizes $1 \le i_1 < \cdots < i_k \le n$.

Spezialfall (k = 1): univariate Randverteilungen $\mathcal{L}(X_i)$.

 $\mathcal{L}(X)$ ist i.a. kompliziert und nur im Spezialfall diskreter oder stetiger Zufallsvektoren einfach zu beschreiben (s.u. Spezialfälle).

Beispiele

→ Werfen von zwei W4-Würfeln:

$$\begin{array}{rcl} \Omega & = & \{(1,1),(1,2),\dots,(1,4),(2,1),\dots,(2,4),\dots,(4,4)\} \\ P(\{(\omega_1,\omega_2)\} & = & 1/16 \\ X(\omega) & = & X((\omega_1,\omega_2)) := |\omega_1-\omega_2| \quad \text{abs. Differenz der Würfelaugen} \\ Y(\omega) & = & Y((\omega_1,\omega_2)) := \omega_1+\omega_2 \quad \text{Augensumme} \end{array}$$

(X, Y) ist ein Zufallsvektor.

→ Körpergröße und Gewicht:

$$\Omega = \{\omega = (\omega_K, \omega_G) | \omega_K, \omega_G > 0\}
X((\omega_K, \omega_G)) := \omega_G
Y((\omega_K, \omega_G)) := \omega_K$$

(X, Y) ist ein Zufallsvektor. Das zugehörige P ist hier unspezifiziert.

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

.

2 Zufallsvektoren

2.1 Zufallsvektoren allgemein

3.) (endliche) Bernoulli-Kette:

N unabhängige Wiederholungen desselben Bernoulli-Experiments.

$$\Omega = \{\omega = (\omega_1, \omega_2, \dots, \omega_N) | \omega_n = \text{ Erfolg oder } \omega_n = \text{ Mißerfolg} \}$$
 Sei $X_n(\omega_1, \dots, \omega_n) := \begin{cases} 1 & \omega_n = \text{ Erfolg} \\ 0 & \text{sonst} \end{cases}$ $i = 1, \dots, N$

 $X := (X_1, X_2, \dots, X_N)$ ist ein Zufallsvektor.

Versuchswiederholungen als Zufallsvektor:

- \hookrightarrow Konstruiere einen N-dimensionalen Stichprobenraum
- \hookrightarrow definiere identische Zufallsvariablen auf den einzelnen Komponenten ω_i des Stichprobenraums

 X_n ist Bernoulli-verteilte Zufallsvariable auf Ω . Das einzelne Bernoulli-Experiment ist definiert auf der Grundgesamtheit $\Omega_1:=\{\omega|\omega=\text{ Erfolg oder }\omega=\text{ Misserfolg}\}.$ Die Bernoulli-Kette ist definiert auf der Grundgesamtheit $\Omega=\Omega_1\times\cdots\times\Omega_n$.

Diskreter Fall – Gemeinsame Dichtefunktion

 \hookrightarrow Ein Zufallsvektor $X=(X_1,\ldots,X_N)$ heißt **diskret** , wenn er höchstens Werte in einer abzählbaren Menge $\mathcal M$ isolierter Vektoren (x_1,\ldots,x_N) annimmt. Die möglichen Werte werden **Realisationen** genannt.

- → Ist ein MZV diskret, ist auch die zugehörige gemeinsame Verteilung diskret.
- \hookrightarrow Für einen MZV (X_1, \dots, X_N) ist die **gemeinsame diskrete Dichtefunktion** definiert als

$$f_{X_1,\ldots,X_N}(x_1,\ldots,x_N) = \begin{cases} P(X_1 = x_1,\ldots,X_N = x_N) & \text{für } (x_1,\ldots,x_N) \in \mathcal{M} \\ 0 & \text{sonst} \end{cases}$$

Es gilt (bzw. muss gelten, damit eine diskrete Dichte vorliegt):

$$\Box \ f_{X_1,X_2,...,X_N}(x_1,...,x_N) \geq 0$$
 $\Box \ \sum_{(x_1,...,x_N)\in\mathcal{M}} f_{X_1,...,X_N}(x_1,...,x_N) = 1$

Die diskrete Dichte wird (für N=2) meist tabellarisch dargestellt (analog zur Kontingenztafel der deskriptiven Statistik)

Dr. Pascal Kerschke Dr. Ingolf Terveer Datenanalyse Sommersemester 2018

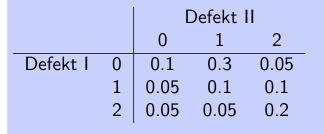
2 Zufallsvektoren 2.2 Diskreter Fall

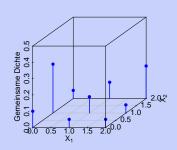
Wartung einer Maschine:

X₁ : Anzahl Defekte vom Typ I im Wartungszeitraum

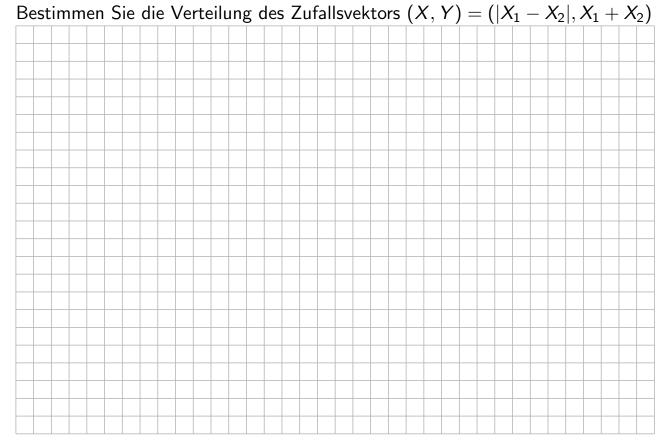
 X_2 : Anzahl Defekte vom Typ II im Wartungszeitraum

Gemeinsame Wahrscheinlichkeiten (z.B. $P(X_1 = 0, X_2 = 0) = 0.1$):





Übung: Zweifacher W4-Würfelwurf mit den Würfen X_1, X_2 .



Dr. Pascal Kerschke Dr. Ingolf Terveer Datenanalyse Sommersemester 2018

2 Zufallsvektoren 2.2 Diskreter Fall

Wie ist die Wahrscheinlichkeit, dass X einen bestimmten Wert annimmt, unabhängig von den Realisierungen der anderen Komponenten des Zufallsvektors?

Sind X und Y diskrete Zufallsvektoren mit gemeinsamer diskreter Dichte $f_{X,Y}$, dann werden die Dichtefunktionen

$$f_X(x_k) := \sum_i f_{X,Y}(x_k, y_i)$$
 und $f_Y(y_k) := \sum_i f_{X,Y}(x_i, y_k)$

diskrete Randdichtefunktionen von X und Y genannt.

Wartung einer Maschine:

Die Randdichten errechnen sich durch Bildung der Zeilen-/Spaltensummen.

		L	Jefekt I		
	X_1/X_2	0	1	2	f_{X_1}
Defekt I	0	0.1	0.3	0.05	0.45
	1	0.05	0.1	0.1	0.25
	2	0.05	0.05	0.2	0.3
	f_{X_2}	0.2	0.45	0.35	1

Dr. Pascal Kerschke Dr. Ingolf Terveer Datenanalyse Sommersemester 2018 9

Übung: Berechnen Sie in der Situation des zweifachen W4-Würfelwurfes (s.o.) die Randverteilungen von $(X,Y)=(|X_1-X_2|,X_1+X_2)$

Dr. Pascal Kerschke Dr. Ingolf Terveer Datenanalyse Sommersemester 2018 10

2 Zufallsvektoren 2.2 Diskreter Fall

- \hookrightarrow die diskreten Randdichten lassen sich aus der gemeinsamen Dichte errechnen
- \hookrightarrow die Umkehrung gilt i.a. nicht.

Wartung einer Maschine

		Defekt II						
	X_1/X_2	0	1	2	f_{X_1}			
Defekt I	0	$0.1 + \varepsilon$	$0.3 - \varepsilon$	0.05	0.45			
	1	$0.05 - \varepsilon$	$0.1 + \varepsilon$	0.1	0.25			
	2	0.05	0.05	0.2	0.3			
	f_{X_2}	0.2	0.45	0.35	1			

Für jedes $0 \le \varepsilon \le 0.05$ definiert die Tabelle gemeinsame Dichten mit unterschiedlichen gemeinsamen Verteilungen, aber identischen Randdichten.

Dr. Pascal Kerschke Dr. Ingolf Terveer Datenanalyse Sommersemester 2018 11

Multinomial-Experiment und Multinomialverteilung

\hookrightarrow	/erallgemeinerung des Bernoulli-Experimentes. Statt zwei jetzt $K\!+\!1$ verschie
	lene Ausgänge eines Einzel-Experimentes

- \square Ausgänge mit WS $p_1, \ldots, p_{K+1} \geq 0$, $p_1 + \cdots + p_{K+1} = 1$
- ☐ Ausgänge verschiedener Einzelexperimente als st.u. angenommen
- z.B. Qualitätssicherung: Statt defekt/intakt jetzt Qualitätsstufen.
- \hookrightarrow Experiment wird *n*-mal wiederholt. X_1,\ldots,X_{K+1} zählen, wie oft Ausgang $1,\ldots,K+1$ eintritt.
- \hookrightarrow Die Verteilung des Zufallsvektors (X_1,\ldots,X_K) heißt **Multinomialverteilung** mit Parametern $n,\ p_1,\ldots,p_K$.

Beachte: p_{K+1}, X_{K+1} werden hierbei nicht mitgeführt.

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

12

2 Zufallsvektoren 2.2 Diskreter Fall

 \hookrightarrow gemeinsame Dichte für $(x_1,\ldots,x_K)\in\mathbb{N}_0^K$

$$f(x_1, \dots, x_K) = \begin{cases} \frac{n!}{x_1! \cdots x_K! x_{K+1}!} p_1^{x_1} \cdots p_K^{x_K} p_{K+1}^{x_{K+1}} & \text{für } x_1 + \dots + x_K \le n \\ 0 & \text{sonst} \end{cases}$$

(mit
$$p_{K+1} = 1 - p_1 - \cdots - p_K$$
, $X_{K+1} = n - X_1 - \cdots - X_K$)

Dazu kombinatorisches Argument:

 \square Partitioniere die Menge $\{1,\ldots,n\}$ der Versuche in K+1 Mengen der Mächtigkeiten x_1,\ldots,x_{K+1} .

Es gibt $\frac{n!}{x_1!\cdots x_{K+1}!}$ Möglichkeiten (Multinomialkoeffizient, vgl. DuW)

 \square Jede Partition legt ein n-Tupel von Versuchsausgängen fest (x_1 -mal Ausgang $1, \ldots, x_{K+1}$ -mal Ausgang K+1.

Weil die Experimente unabhängig und gleichartig sind, trägt jeder derartige Ausgang dieselbe WS $p_1^{x_1} \cdots p_{K+1}^{x_{K+1}}$.

Beispiel: Schokohasen

Ein **Beutel** enthält 12 Schokohasen, davon fünf aus Vollmilch-, vier aus Zartbitterund drei aus weißer Schokolade.

- \hookrightarrow Nach und nach werden Schokohasen gezogen, der Typ notiert und wieder zurückgelegt.
- → Wie ist die Wahrscheinlichkeit, dass von sechs gezogenen Schokohasen 3 aus Vollmilch-, 2 aus Zartbitter- und 1 aus weißer Schokolade sind?
- \hookrightarrow Multinomial verteilung mit $n=6, p_1=\frac{5}{12}, p_2=\frac{4}{12} \Rightarrow p_3=1-\frac{9}{12}=\frac{3}{12}$

$$f_{X_1,X_2}(x_1,x_2) = \frac{6!}{3!2!1!} \left(\frac{5}{12}\right)^3 \left(\frac{4}{12}\right)^2 \left(\frac{3}{12}\right)^1 = \frac{625}{5184} = 0.12$$

→ Werden nur die Kategorien "Vollmilch" und "Nicht-Vollmilch" unterschieden, so wird die Multinomialverteilung zur Binomialverteilung:

$$p = \frac{5}{12}, B(k|p, n) = \binom{n}{k} p^k (1-p)^{n-k} = \binom{6}{3} \left(\frac{5}{12}\right)^3 \left(\frac{7}{12}\right)^3 = 0.28$$

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

14

2 Zufallsvektoren 2.2 Diskreter Fall

Übung: Auf einem siebentägigen Skiseminar des Instituts wird täglich eine/r der 15 Teilnehmenden (2 Professoren, 5 Mitarbeiter, 8 Studierende) ausgelost, um den Getränkevorrat zu verwalten (mehrmalige Auslosung möglich).

- \hookrightarrow Mit welcher WS werden 1 Mitarbeiter und 6 Studierende ausgelost?
- \hookrightarrow Mit welcher WS werden nur Mitarbeiter und Studierende ausgelost?

Gemeinsame Verteilungsfunktion

Die **gemeinsame (kumulative) Verteilungsfunktion** F_X eines Zufallsvektors $X := (X_1, X_2, ..., X_N)$ von Zufallsvariablen $X_n, n = 1, ..., N$, ist definiert als

$$F_{X_1,X_2,...,X_N}(x_1,x_2,...,x_N) := P(\{\omega|X_1(\omega) \leq x_1,X_2(\omega) \leq x_2,...,X_N(\omega) \leq x_N\})$$

$$\forall x_n \in \mathbb{R}, n = 1, \dots, N$$

→ da die einzelnen Komponenten die Messbarkeitseigenschaft besitzen, gilt dies auch für den zugehörigen Zufallsvektor, denn

$$\{\omega|X_1(\omega) \le x_1, X_2(\omega) \le x_2, \dots, X_N(\omega) \le x_N\}$$

= $\{\omega|X_1(\omega) \le x_1\} \bigcap \{\omega|X_2(\omega) \le x_2\} \bigcap \dots \bigcap \{\omega|X_N(\omega) \le x_N\} \in \mathcal{A}$

 \hookrightarrow dies ist insbesondere gültig, weil sämtliche Zufallsvariablen von demselben $\omega \in \Omega$ abhängen

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

16

2 Zufallsvektoren

2.3 Multivariate Verteilungsfunktion

Diskreter bivariater Fall:

$$F_{X,Y}(x,y) = P(X \le x, Y \le y) = \sum_{x_i \le x} \sum_{y_i \le y} f_{X,Y}(x_i, y_j)$$

Wartung einer Maschine

X: Anzahl Defekte vom Typ I im Wartungszeitraum

Y: Anzahl Defekte vom Typ II im Wartungszeitraum

Die Einträge der Verteilungsfunktion (links) ergeben sich durch Addition des Eintrags der Dichtefunktion summiert zu den Zellwerten, die links und oberhalb liegen:

$$f_{X,Y}(x,y)$$

 $\mathbf{F}_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y})$

		[Defekt I	I				Defekt I	I
		0	1	2			0	1	2
Defekt I	0	0.1	0.3	0.05	Defekt I	0	0.1	0.4	0.45
	1	0.05	0.1	0.1		1	0.15	0.55	0.7
	2	0.05	0.05	0.2		2	0.2	0.65	1

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

Diskreter bivariater Fall:

$$F_{X,Y}(x,y) = P(X \le x, Y \le y) = \sum_{x_i \le x} \sum_{y_i \le y} f_{X,Y}(x_i, y_j)$$

Wartung einer Maschine

X: Anzahl Defekte vom Typ I im Wartungszeitraum

Y: Anzahl Defekte vom Typ II im Wartungszeitraum

Die Einträge der Verteilungsfunktion (links) ergeben sich durch Addition des Eintrags der Dichtefunktion summiert zu den Zellwerten, die links und oberhalb liegen:

 $f_{X,Y}(x,y)$

 $F_{X,Y}(x,y)$

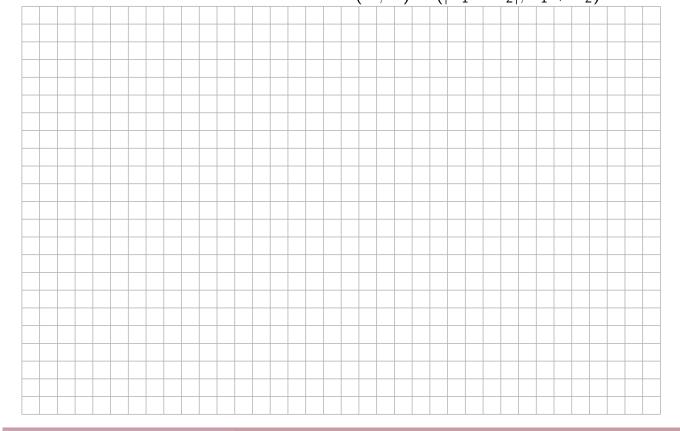
		[Defekt l	II					Defekt I	l
		0	1	2				0	1	2
Defekt I	0	0.1	0.3	0.05	_	Defekt I	0	0.1	0.4	0.45
	1	0.05	0.1	0.1			1	0.15	0.55	0.7
Defekt I	2	0.05	0.05	0.2		Defekt I	2	0.2	0.65	1

Dr. Pascal Kerschke Dr. Ingolf Terveer Datenanalyse Sommersemester 2018 1

2 Zufallsvektoren

2.3 Multivariate Verteilungsfunktion

Übung: Zweifacher W4-Würfelwurf mit den Würfen X_1, X_2 . Bestimmen Sie die VF des Zufallsvektors $(X, Y) = (|X_1 - X_2|, X_1 + X_2)$



Eigenschaften der gemeinsamen Verteilungsfunktion $F = F_{X,Y}(Bivariater Fall)$

i)
$$F(-\infty, y) := \lim_{x \to -\infty} F(x, y) = 0 = \lim_{y \to -\infty} F(x, y) =: F(x, -\infty)$$
 und $F(\infty, \infty) := \lim_{x \to \infty} F(x, y) = 1$

ii) Seien $x_1 < x_2$ und $y_1 < y_2$. Dann gilt:

$$P(x_1 < X \le x_2, y_1 < Y \le y_2) = F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1)$$

iii) F ist rechtsstetig in jedem Argument, d.h.

$$\lim_{h \downarrow 0} F_{X,Y}(x+h,y) = \lim_{h \downarrow 0} F_{X,Y}(x,y+h) = F_{X,Y}(x,y)$$

Korrespondenzsatz

Jede Funktion $F:\mathbb{R}^2 o [0,1]$ mit den Eigenschaften i) und iii) und der Eigenschaft

$$F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0 \quad \forall x_1 < x_2, y_1 < y_2 \quad (*)$$

legt auf eindeutige Art und Weise eine bivariate Verteilung auf \mathbb{R}^2 fest.

(mit Verallgemeinerung von (*) auf multivariate Verteilungen übertragbar)

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

20

2 Zufallsvektoren

2.3 Multivariate Verteilungsfunktion

Wartung einer Maschine

	[Defekt I	I	Defekt II				
$F_{X,Y}(x,y)$	0	1	2		$f_{X,Y}(x,y)$	0	1	2
0	0.1	0.4	0.45	-	0	0.1	0.3	0.05
1	0.15	0.55	0.7		1	0.05	0.1	0.1
2	0.2	0.65	1		2	0.05	0.05	0.2

$$f_{X,Y}(1,2) = P(0 < X \le 1, 1 < Y \le 2) = 0.7 - 0.55 - 0.45 + 0.4 = 0.1$$

Die diskrete Dichte (und damit die bivariate Verteilung von X, Y) lässt sich aus $F_{X,Y}$ also "rekonstruieren".

 $\hookrightarrow F_X(x) := F_{X,Y}(x,\infty)$ und $F_Y(y) := F_{X,Y}(\infty,y)$ werden Randverteilungsfunktionen von X und Y genannt

		[Defekt	Ш	
	$F_{X,Y}(x,y)$	0	1	2	Randverteilungsfunktion von X
Defekt I	0		0.4		
	1	0.15	0.55	0.7	Randverteilungsfunktion von Y
	2	0.2	0.65	0.7 1;1	

(bei endlich-diskreten Verteilungen als untere Zeile/rechte Spalte der Tabelle zu $F_{X,Y}$ ablesbar)

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

າາ

2 Zufallsvektoren

2.4 Stetige Zufallsvektoren

Stetige Zufallsvektoren

Ein Zufallsvektor = $(X_1, ..., X_N)$ heißt **N-dimensionaler stetiger Zufallsvektor**, wenn mit einer geeigneten Funktion $f_{X_1,...,X_N} \ge 0$ für die multivariate VF gilt:

$$F_{X_1,\ldots,X_N}(x_1,\ldots,x_n)=\int_{-\infty}^{x_N}\cdots\int_{-\infty}^{x_1}f_{X_1,\ldots,X_N}(u_1,\ldots,u_N)du_1\ldots du_N$$

Die Funktion $f_{X_1,...,X_N}$ heißt **gemeinsame Dichtefunktion** der Zufallsvariablen $X_1,...,X_N$. Die zu einem stetigen Zufallsvektor gehörende gemeinsame Verteilungsfunktion heißt **absolut stetig.**

Sei (X, Y) ein 2-dimensionaler stetiger Zufallsvektor. Dann läßt sich die gemeinsame Dichtefunktion $f_{X,Y}$ aus der gemeinsamen Verteilungsfunktion berechnen:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$$

Randdichten

Wenn (X Y) ein 2-dimensionaler stetiger Zufallsvektor ist, dann werden die Dichtefunktionen

$$f_X(x) := \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
 und $f_Y(y) := \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$

stetige Randdichtefunktionen von X bzw. Y genannt.

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

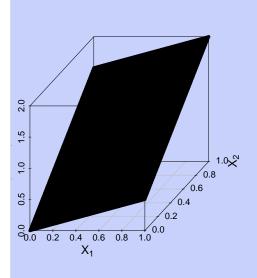
24

2 Zufallsvektoren

2.4 Stetige Zufallsvektoren

Beispiel stetige gemeinsame Dichtefunktion

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} \frac{1}{2}x_1 + \frac{3}{2}x_2 & 0 \le x_1,x_2 \le 1, \\ 0 & sonst \end{cases}$$



 $f_{X_1,X_2}(x_1,x_2)$ ist eine Dichte:

$$\int_{0}^{1} \int_{0}^{1} f_{X_{1}, X_{2}}(x_{1}, x_{2}) dx_{1} dx_{2}$$

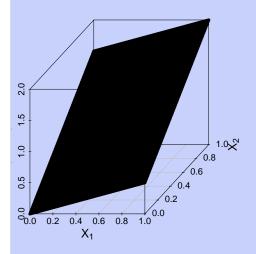
$$= \int_{0}^{1} \left(\int_{0}^{1} \frac{1}{2} x_{1} + \frac{3}{2} x_{2} dx_{1} \right) dx_{2}$$

$$= \int_{0}^{1} \left(\frac{1}{2} \cdot \left[\frac{x_{1}^{2}}{2} \right]_{0}^{1} + \frac{3}{2} x_{2} \cdot \left[x_{1} \right]_{0}^{1} \right) dx_{2}$$

$$= \int_{0}^{1} \left(\frac{1}{4} + \frac{3}{2} x_{2} \right) dx_{2}$$

$$= \frac{1}{4} \cdot \left[x_{2} \right]_{0}^{1} + \frac{3}{2} \cdot \left[\frac{x_{2}^{2}}{2} \right]_{0}^{1} = \frac{1}{4} + \frac{3}{4} = 1$$

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} \frac{1}{2}x_1 + \frac{3}{2}x_2 & 0 \le x_1, x_2 \le 1, \\ 0 & sonst \end{cases}$$



Randdichten:

$$f_{X_1}(x_1) = \int_0^1 \left(\frac{1}{2}x_1 + \frac{3}{2}x_2\right) dx_2$$

$$= \frac{1}{2}x_1 + \frac{3}{2}\left[\frac{x_2^2}{2}\right]_0^1 = \frac{1}{2}x_1 + \frac{3}{4}$$

$$f_{X_2}(x_2) = \int_0^1 \left(\frac{1}{2}x_1 + \frac{3}{2}x_2\right) dx_1 = \frac{3}{2}x_2 + \frac{1}{4}$$

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

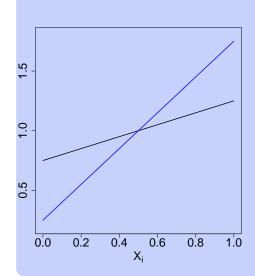
Sommersemester 2018

26

2 Zufallsvektoren

2.4 Stetige Zufallsvektoren

$$f_{X_1,X_2} = \begin{cases} \frac{1}{2}x_1 + \frac{3}{2}x_2 & 0 \le x_1, x_2 \le 1, \\ 0 & sonst \end{cases}$$



Randdichten:

$$f_{X_1}(x_1) = \int_0^1 \left(\frac{1}{2}x_1 + \frac{3}{2}x_2\right) dx_2$$

$$= \frac{1}{2}x_1 + \frac{3}{2}\left[\frac{x_2^2}{2}\right]_0^1 = \frac{1}{2}x_1 + \frac{3}{4}$$

$$f_{X_2}(x_2) = \int_0^1 \left(\frac{1}{2}x_1 + \frac{3}{2}x_2\right) dx_1 = \frac{3}{2}x_2 + \frac{1}{4}$$

→ jede Randdichte lässt sich aus der gemeinsamen Dichte bestimmen, umgekehrt gilt das nicht:

Beispiel (Übung)

$$f_{X,Y}(x,y,\alpha) := f_X(x)f_Y(y)[1+\alpha\cdot(2F_X(x)-1)(2F_Y(y)-1)] \quad \forall -1 \le \alpha \le 1$$

mit Randdichten f_X , f_Y und Randverteilungen F_X , F_Y . Dann gilt:

- (i) $f_{X,Y}$ ist eine bivariate stetige WS-Dichte für jedes α
- (ii) f_X und f_Y sind Randdichten von $f_{X,Y}$ für jedes α .

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

28

2 Zufallsvektoren

2.5 Unabhängigkeit von Zufallsvariablen

Unabhängigkeit von Zufallsvariablen

Zufallsvariablen $X_1, ..., X_N$ heißen (stochastisch) unabhängig (st.u.), wenn für alle Ereignisse $A_1, ..., A_N$ gilt:

$$P(X_1 \in A_1, \ldots, X_N \in A_N) = P(X_1 \in A_1) \times \cdots \times P(X_N \in A_N)$$

Für diskrete und stetige Zufallsvariablen mit der gemeinsamen Verteilungsfunktion $F_{X_1,...,X_N}$ und gemeinsamer Dichtefunktion $f_{X_1,...,X_N}$ lauten gleichwertige Kriterien für st.U.:

(i)
$$F_{X_1,...,X_N}(x_1,x_2,...,x_N) = \prod_{i=1}^N F_{X_i}(x_i) \quad \forall x_1,...,x_N$$

(ii)
$$f_{X_1,...,X_N}(x_1,x_2,...,x_N) = \prod_{i=1}^N f_{X_i}(x_i) \quad \forall x_1,...,x_N$$

u.i.v.-Folgen

Eine Folge $X_1, X_2, ..., X_N, ...$ von Zufallsvariablen heißt **u.i.v-Folge,** wenn sie alle dieselbe Verteilung haben und je endlich viele stochastisch unabhängig sind.

Beispiel

$$f_{X,Y}(x,y) := e^{-(x+y)}$$
 für $x, y > 0$

Für die Randdichten gilt:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{\infty} e^{-(x+y)} dy$$

$$= e^{-x} \int_{0}^{\infty} e^{-y} dy = e^{-x} \cdot [-e^{-y}]_{0}^{\infty} = e^{-x} [0 - (-1)] = e^{-x}$$

$$f_Y(y) = e^{-y} \quad \text{analog}$$

$$\Rightarrow f_{X,Y}(x,y) = e^{-(x+y)} = e^{-x}e^{-y} = f_X(x)f_Y(y)$$

 \Rightarrow X und Y sind stochastisch unabhängig

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

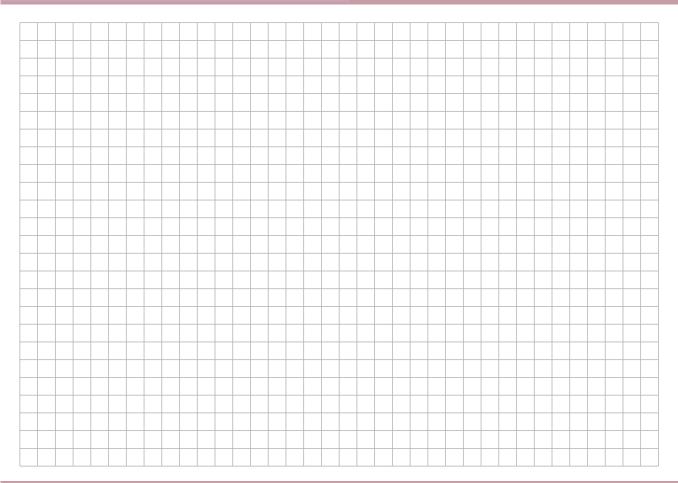
30

2 Zufallsvektoren

2.5 Unabhängigkeit von Zufallsvariablen

Übung: Prüfen Sie, dass $f(x,y) = f_{X,Y}(x,y) = \frac{12}{7}x(x+y)$ auf $[0;1] \times [0;1]$ eine WS-Dichte ist und berechnen Sie die Randverteilungen sowie die gemeinsame Verteilungsfunktion. Sind X, Y st.u.?





Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

22

2 Zufallsvektoren

2.5 Unabhängigkeit von Zufallsvariablen

Zusammenhang zwischen st.u. Ereignissen und st.u. Zufallsvariablen:

Memo DuW: Stochastische Unabhängigkeit von Ereignissen

- \hookrightarrow Zwei Ereignisse A, B heißen st.u., wenn $P(A \cap B) = P(A)P(B)$
- \hookrightarrow Ereignisse A_1,\ldots,A_n heißen st.u., wenn für jede beliebige Auswahl von $k\leq n$ Ereignissen A_{i_1},\ldots,A_{i_k} gilt $P(A_{i_1}\cap\cdots\cap A_{i_k})=P(A_{i_1})\times\cdots\times P(A_{i_k})$

Memo DuW: Indikatorfunktion eines Ereignisses A

$$\mathbb{1}_A(\omega) := \begin{cases} 1 & \text{falls } \omega \in A \\ 0 & \text{falls } \omega \notin A \end{cases}$$

Sie ist eine Zufallsvariable mit Bernoulli-Verteilung $\mathcal{B}(1,p)$, p=P(A).

St.U. von Ereignissen vs. st.U. von Zufallsvariablen

Ereignisse A_1, \ldots, A_n sind st.u. genau dann, wenn die ZV $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_n}$ st.u. sind.

Memo DuW: Momente einer Zufallsvariable

 \hookrightarrow Für eine (messbare) Funktion $g:\mathbb{R}\to\mathbb{R}$ und eine Zufallsvariable X ist

$$E(g(X)) = \begin{cases} \sum_{k} g(x_k) \cdot f_X(x_k) & \text{diskreter Fall} \\ \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx & \text{stetiger Fall} \end{cases}$$

 \hookrightarrow Spezialfälle:

```
□ Erwartungswert E(X) (mit g(x) = x)
□ Varianz var(X) = E(X - E(X))^2 = E(X^2) - (E(X))^2
```

- \hookrightarrow Regeln für ZV X,Y (sofern Erwartungswerte existieren) und $a,b,c\in\mathbb{R}$
 - \Box $E(\mathbb{1}_A) = P(A)$.
 - $\Box E(aX + bY + c) = aE(X) + bE(Y) + c$
 - \square $var(aX + b) = a^2 var(X)$ für
 - $\square X, Y \text{ st.u.} \Rightarrow E(XY) = E(X)E(Y)$
 - $\square X, Y, \text{ st.u.} \Rightarrow var(X + Y) = var(X) + var(Y)$
- \hookrightarrow SGGZ:

Für u.i.v. X_1, X_2, \ldots mit ex. Erwartungswert gilt $\bar{X}_n \stackrel{n \to \infty}{\longrightarrow} E(X_1)$ mit WS 1.

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

21

2 Zufallsvektoren

2.6 Korrelationskoeffizienten

Korrelationskoeffizienten

Welche Kennzahlen beschreiben den Grad des (linearen) Zusammenhangs zwischen Zufallsvariablen X, Y?

Seien X, Y Zufallsvariablen mit Dichtefunktion $f_{X,Y}$ und existierenden Varianzen.

Kovarianz:
$$cov(X, Y) := E((X - EX)(Y - EY)) = E(XY) - E(X)E(Y)$$

Dabei:
$$E(XY) = \sum_{k,i} x_k \cdot y_i \cdot f_{X,Y}(x_k, y_i)$$
 (diskreter Fall)

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \cdot f_{X,Y}(x,y) dxdy$$
 (stetiger Fall)

Pearson-Korrelation: $cor(X, Y) := cov(X, Y) / \sqrt{var(X)var(Y)}$

 \hookrightarrow Mit $\rho = cor(X, Y)$ gilt $-1 \le \rho \le 1$ und $|\rho| = 1 \qquad \Leftrightarrow \qquad \exists a, b, c \in \mathbb{R}, \text{ mit } ab\rho < 0 \text{ und } aX + bY = c \text{ fast sicher}$

 $\hookrightarrow X, Y$ stochastisch unabhängig $\Rightarrow cov(X, Y) = cor(X, Y) = 0$ (Umkehrung falsch).

Beispiel: Wartung einer Maschine

		[Defekt I	I	
	X_1/X_2	0	1	2	f_{X_1}
Defekt I	0	0.1	0.3	0.05	0.45
	1	0.05	0.1	0.1	0.25
	2	0.05	0.05	0.2	0.3
	f_{X_2}	0.2	0.45	0.35	1

$$E(X_1X_2) = 0 \cdot (0.1 + \dots + 0.05) + 1 \cdot (0.1) + 2 \cdot (0.05 + 0.1) + 4 \cdot (0.2) = 1.2$$

$$E(X_1) = 0 \cdot 0.45 + 1 \cdot 0.25 + 2 \cdot 0.3 = 0.85$$

$$E(X_1^2) = 0 \cdot 0.45 + 1 \cdot 0.25 + 2^2 \cdot 0.3 = 1.45$$
, $var(X_1) = 1.45 - 0.85^2 = 0.7275$

$$E(X_2) = 0 \cdot 0.2 + 1 \cdot 0.45 + 2 \cdot 0.35 = 1.15$$

$$E(X_2^2) = 0 \cdot 0.2 + 1 \cdot 0.45 + 2^2 \cdot 0.35 = 1.85$$
, $var(X_2) = 1.85 - 1.15^2 = 0.5275$

$$cov(X_1, X_2) = 1.2 - 0.85 \cdot 1.15 = 0.2225$$

$$cor(X_1, X_2) = 0.2225/\sqrt{0.7275 \cdot 0.5275} \approx 0.359$$

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

26

2 Zufallsvektoren

2.6 Korrelationskoeffizienten

Übung: Berechnen Sie in der Situation des zweifachen W4-Würfelwurfes (s.o.) die Korrelation von $X=|X_1-X_2|,\,Y=X_1+X_2$

Beispiel stetige gemeinsame Dichtefunktion

$$\begin{split} f_{X_1,X_2}(x_1,x_2) &= \begin{cases} \frac{1}{2}x_1 + \frac{3}{2}x_2 \ 0 \leq x_1,x_2 \leq 1, \\ 0 & sonst \end{cases} \\ \text{mit Randdichten } f_{X_1}(x_1) &= \frac{1}{2}x_1 + \frac{3}{4}, \ f_{X_2}(x_2) = \frac{3}{2}x_2 + \frac{1}{4} \end{cases} \qquad \text{(auf [0;1])} \\ E(X_1X_2) &= \int\limits_0^1 \int\limits_0^1 xy(\frac{1}{2}x + \frac{3}{2}y) dx dy = \int\limits_0^1 \frac{1}{2}x^2 dx \int\limits_0^1 y dy + \int\limits_0^1 x dx \int\limits_0^1 \frac{3}{2}y^2 dy = \cdots = \frac{1}{3} \\ E(X_1) &= \int\limits_0^1 x(\frac{1}{2}x + \frac{3}{4}) dx = \cdots = \frac{13}{24} \\ E(X_1^2) &= \int\limits_0^1 x^2(\frac{1}{2}x + \frac{3}{4}) dx = \cdots = \frac{3}{8} \qquad var(X_1) = \frac{3}{8} - (\frac{13}{24})^2 = \frac{47}{576} \\ E(X_2) &= \int\limits_0^1 y(\frac{3}{2}y + \frac{1}{4}) dy = \cdots = \frac{5}{8} \\ E(X_2^2) &= \int\limits_0^1 y^2(\frac{3}{2}y + \frac{1}{4}) dy = \cdots = \frac{11}{24} \qquad var(X_2) = \frac{11}{24} - (\frac{5}{8})^2 = \frac{13}{192} \\ cov(X_1, X_2) &= \frac{1}{3} - \frac{13}{24} \cdot \frac{5}{8} = -\frac{1}{192} \\ cor(X_1, X_2) &= -\frac{1}{192} / \sqrt{\frac{47}{576} \cdot \frac{13}{192}} = \cdots = -\sqrt{3/611} \approx 0.07 \end{split}$$

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

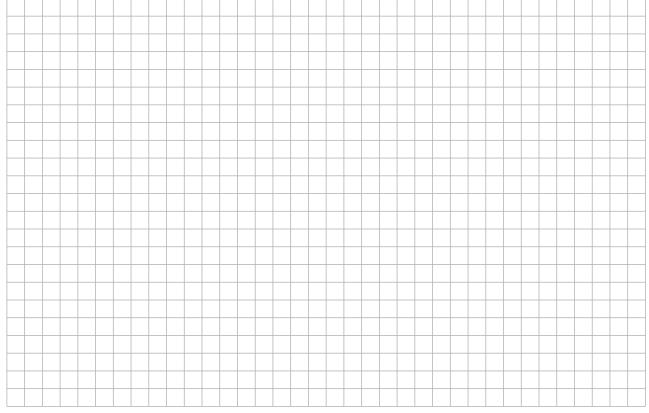
Sommersemester 2018

20

2 Zufallsvektoren

2.6 Korrelationskoeffizienten

Übung: Berechnen Sie cor(X, Y) für $f_{X,Y}(x, y) = \frac{12}{7}x(x+y)\mathbb{1}_{[0;1]^2}(x,y)$



$$\square \ s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
 (und $s_x = \sqrt{s_{xx}}$, $s_y = \sqrt{s_{yy}}$)

$$\square \ r_{xy} = \frac{s_{xy}}{s_x s_y}$$

- \hookrightarrow Bei u.i.v.-Folgen von MZV $(X_1, Y_1), \ldots, (X_n, Y_n), \ldots$ gelten auch hier GGZ
- \hookrightarrow z.B. bei existierenden Varianzen $var(X_i)$, $var(Y_i)$ mit WS 1:

$$s_{XY} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) \xrightarrow{n \to \infty} cov(X, Y)$$
$$r_{XY} = \frac{s_{XY}}{s_Y s_Y} \xrightarrow{n \to \infty} \frac{cov(X, Y)}{\sqrt{var(X)var(Y)}} = cor(X, Y)$$

→ Rückschluss von Daten auf Grundgesamtheit ist (bei "ausreichend großen" Stichproben) prinzipiell möglich (z.B. Korrelationstests).

Dr. Pascal Kerschke Dr. Ingolf Terveer

Datenanalyse

Sommersemester 2018

40

Literatur

Literatur I

zum Teil angelehnt an: Vorlesung Statistik für Ökonomen, TU Dortmund, WS 2010/2011, Dr. Hendrik Hansen