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Abstract

This documentation will show in detail the outcomes of a research oriented project
seminar that investigated means of non-manual or semi-automatic methods of game
parameter balancing. The findings are based on a game prototype, provided by
Blue Byte GmbH, one of the leading computer and console games developers in
Germany. The documentation will provide insights on the game itself as well as
the applied modifications. Based on an extensive literature analysis in the field
of Modern Gaming and Artificial or Computational Intelligence, an evolutionary
algorithm was applied in order to discover an optimal set of game parameters. It
will be shown that results from the algorithmic experiments are good candidates for
a positive human player experience. A detailed data analysis will discuss the results
delivered by the algorithm. Additionally, challenges and natural limitations of the
conducted approach will be discussed and an outlook of potential future fields of
research will be proposed.
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1 Introduction

Modern computer games grow in space and complexity. In order to ensure an
efficient and profitable production of games, new approaches of automatic design and
development are required. In this context, this project seminar investigated means
of non-manual and algorithmic methods for game parameter balancing.

The research presented is both, theory- and data-driven. From the theoretical
perspective an extensive literature analysis of relevant research streams has been
carried out prior to the beginning of the practical part. The subsequent practical
(data-driven) part is based on a game prototype provided by Blue Byte GmbH, one
of the leading computer and console games developers in Germany.

Chapter 2 of this documentation introduces the research approach and working
methodology of this Project Seminar (PS). Chapter 3 describes the conducted litera-
ture analysis. Chapter 4 briefly depicts the organizational aspects of the PS team.
Chapter 5 offers a description of the games that were subject to research. Chapter 6
illustrates in detail the implemented methodology, the Balancing Environment (BE)
and how it was constructed. Chapter 7 outlines technical restrictions of the game
prototype and general challenges of the research setup. Chapter 8 documents the
process of manual balancing that had been conducted in parallel as a comparison.
Chapter 9 documents the conducted simulations that served as inputs for the data
analysis. Chapter 10 provides analytic tools to find good, balanced solutions, get a
deeper understanding about the game, and overcome time constraints for simulations.
Chapter 11 provides a more generic process model which was derived from the
conducted procedure and the experience gained. Chapter 12 discusses the main
findings as well as limitations of the outcome of this PS and offers an outlook for
future research.

All of the content which can be seen in this documentation can be found in the
GitLab repository or the attached Digital Versatile Disc (DVD). There are four main
directories in the repository. All of the content of the two different games are in the
respective directories 2DRoguelike and ZVG. All produced Comma Separated Values
(CSV) logs can be found in the CSVLogs directory, once again ordered by the game
and then by type of file. The RCode directory contains all code which was written in
the R Programming Language (R) and used for the data analysis.
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All the scripts can be found in git repository, however not all of them are rele-
vant and developed during PS. Therefore, the below list outlines the main structure
of the repository and describes briefly the content of developed folders.

• ZVG/ - folder with ZVG Unity game

• ZVG/Assets/GameInterface - main folder with produced code

Algorithms/ - folder with optimization algorithms

EA/ - folder with different strategies for evolutionary algorithms

BalancingSuite/ - folder includes balancing suite script

Behaviors/ - folder includes developed AIs for the player

Games/ - folder includes developed Game entities

Goals/ - folder includes developed game goals

GUI/ - folder includes developed user interface objects

Misc/ - folder includes miscellaneous objects, like Feature or Solution
entities

Misc Scenarios/ - folder includes miscellaneous scenes which were not
used for balancing

Placement/ - folder includes placement scripts, they are used to place
variable number of player units in a scene

Scenarios/ - folder includes scenes which were used for balancing

Utils/ - folder includes miscellaneous scripts, like developed statistical
functions

• 2DRoguelike/ - folder with 2DR Unity game

• 2DRoguelike/Assets/Completed/Scenes - folder with scenes which were used
for balancing

• 2DRoguelike/Assets/Completed/Scripts - main folder with adapted code

Algorithms/ - folder with adapted optimization algorithms

BalancingSuite/ - folder includes adapted balancing suite script

Controllers/ - folder includes developed AIs for player and zombies
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Games/ - folder includes developed Game entities

Goals/ - folder includes developed game goals

Misc/ - folder includes adapted miscellaneous objects, like Feature or
Solution entities

Utils/ - folder includes adapted miscellaneous scripts, like developed
statistical functions

• CSVLogs/ - folder with generated logs for both games, includes population and
session logging

• RCode/ - folder with produced R code

images/ - folder includes produced plots and images
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2 Research Approach

According to the module compendium of the Master of Science in Information
Systems study track at the University of Münster, a PS intends to apply material
and methods that were introduced in former method tracks in a practice-oriented
manner to solve a realistic and complex problem. The project is often performed in
collaboration with a partner company from the industry, which varies from term to
term [WWUa].

This PS was offered by the group of Information Systems and Statistics, which
is focusing its primary research on continuous and combinatorial optimization prob-
lems with the integration of statistical techniques into multiobjective metaheuristics
such as evolutionary algorithms [WWUb]. The collaboration partner from the indus-
try was Blue Byte GmbH, one of the leading developers for computer and console
games in Germany. The collaboration has been established by the supervisor prior
to the beginning of the PS.

The project seminar itself consisted of several phases. During the first phase, each
of the students was assigned with the literature search and analysis of a different
research stream related to ’Modern Approaches for Balancing in Computer Games’.
The findings of phase I are outlined in detail below in chapter 3. Based on the
findings of the literature search, the PS group selected an approach to investigate an
identified research gap.

The research environment (see chapter 5) was set around a provided prototype
game that had been built prior to the beginning of the PS by Blue Byte GmbH. The
prototype is bound to Unity, a game engine that allows to build 2D and 3D games
for different platforms.

Based on this setup, a specific research design (working concept) was formulated,
constructed and deployed during the second phase.
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Figure 1: Working Concept: Automated and manual game balancing.

Based on a classical input-output-model, the working concept shows a set of in-
puts that are applied within two different methodologies of which both results were
compared and analyzed. The inputs were conceptualized as general as possible and
intend to match the provided prototype. On its highest level, the prototype build
within Unity is an entire game construct or a subset of the game, i.e. a level or a
scene. Each scene/game can have a different goal, which in the context of this PS is
a quantification of the general purpose (e.g. challenge) in the environment of the
game, i.e. winning condition (e.g. surviving for 60 seconds). The choice for a goal
has wide implications on the remaining construct. The goal can vary, but constitutes
in this sense as an independent variable.

Parameters are formalized values that define the workings of the game. The number
of game parameters vary from game to game but can be very large even for small
games. Most game parameters are directly or indirectly interrelated with each other.
This complexity can bring about an unbalanced player experience. Hence, balancing a
game can often involve tweaking the game parameters. Since a change of one parame-
ter can propagate through all other parameters, some choice has to be made regarding
which parameters should be subject for tweaking. This selected set of game parame-
ters is the decision variable in the context of this research model and the value ranges
of the respective parameters define the boundaries within the balancing can be tested.

Artificial Intelligence (AI) in the context of this PS refers to either Non-Player
Character (NPC) behavior or simulated player behavior. The configuration of the
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NPC behavior is attributed to the scene/game, while the player AI is an external
representation that acts as an agent of how a human would play the game. Similar
to the choice for a goal, both AIs have also wide implications on the remaining
construct, but are also kept as independent variable, in the sense that the conducted
research at hand did not seek to find an optimal human-like representation of player
behavior.

The depicted set of inputs work in interrelation and are tested manually as well as
non-manually by means of the BE. In both approaches, data is collected and ana-
lyzed. The entire approach is translated into a generic balancing process model that
intends to guide future research and practitioners in reproducing this semi-automated
methodology.
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3 Literature Analysis

In the first phase of the PS, each of the participants was assigned with searching and
analyzing literature in a particular field of research. Each of those research streams
is targeted towards identifying relevant and applicable approaches for non-manual
means to balance computer games. This research analysis had been conducted based
on the following definition of game balancing:

Definition 1 Game Balancing. Small changes to a game (basically parameter
adaptation) in order to satisfy predetermined goals.

The results of each literature analysis were presented and discussed in the context of
weekly appointments over a period of four weeks.

The following sub-chapters provide a brief overview of the results for each field.
They are structured in the chronological order of presentations held during the
appointments. Table 1 gives an overview of the research streams (topic), the person
who investigated the research stream, and the date of presentation.

Topic Group Member Presentation Date

Goals of Game Balancing Christoph Laenger 10/29/2015
Data-driven Optimization Methods Marlene Beyer 10/29/2015
Practical Examples: Unbalanced
Games

Marcel Renka 11/05/2015

Practitioner’s Perspective on Game
Balancing

Aleksandr Agurekin 11/10/2015

Artificial Intelligence Methods: An
Overview

Alexander Anokhin 11/10/2015

Procedural Content Generation Martin Rieger 11/12/2015
Dynamic Difficulty Adjustment Jonas Winterberg 11/12/2015
Balancing Applications in Other Do-
mains

Felix Nolte 11/19/2015

Game Balancing by Computational
Mechanism Design

Vanessa Volz (Tutor) 11/23/2015

Table 1: Presentation Topics per Student.
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3.1 Goals of Game Balancing

This presentation focused on the twelve types of game balances featured in The Art
of Game Design: A Book of Lenses [Sch14]. When a game designer intends to balance
a game, each of these types should be taken into account. For each type, a goal can
be formulated, e.g. with regards to the type Challenge vs. Success a game designer
may decide to favor challenges instead of letting players be successful without much
effort. In the following, all twelve types are explained in detail.

1. Fairness: It is necessary to distinguish between two kinds of games with
regards to fairness. In symmetrical games it is simple to ensure fairness by
giving equal resources and power to all players. The skills and strategies
individual players bring to the game are the deciding factor. This is different in
asymmetrical games, where it is possible and often desirable to give opponents
different resources and abilities. For example, in order to level the playing
field for two players of different skill levels, the less skilled player may be given
access to more resources.

2. Challenge vs. Success: How challenging a game is, is related to the skill
level of the player who is playing the game. Ideally, the game designer strikes
a balance between these two characteristics in such a way that the player is
neither bored nor anxious. However, a game designer may decide that their
game provide players with a tough challenge on purpose.

3. Meaningful Choices: Choices are meant to have a real impact on what
happens next and how the game turns out. Meaningless choices, e.g. different
racing cars that all drive the same, as well as dominant strategies, e.g. a racing
car that strictly is better than all others, may have a negative impact on game
balance and should be avoided.

4. Skill vs. Chance: Games of skill tend to be more serious while games of
chance tend to be more relaxed. It all comes down to the target audience and
their expected preferences.

5. Heads vs. Hands: This is about how much of the game should involve doing
a challenging physical task and how much should involve thinking. Again, it
is important to know what the target audience is going to look like and to
understand what they expect the game to be or not to be. Communicating
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the balance between physical tasks and thinking involved is equally important
as getting the balance right.

6. Competition vs. Cooperation: In most games this can be trivial, e.g. a
single player game usually involves neither. However, this can be very complex
in games that feature both, e.g. Massively Multiplayer Online Role-Playing
Games (MMORPGs) featuring a Player vs. Player (PvP) environment and an
economy where players may engage in trading.

7. Short vs. Long: If a game is too short, players may not get a chance to
develop and execute meaningful strategies. If it is too long, players may get
bored or may be put off by the time commitment required to play the game.

8. Rewards: Common types of rewards include points, powers, and resources.
It should be noted that - to players - what felt rewarding before may not feel
rewarding now. This can be avoided, e.g. by making rewards variable and
adjusting them according to the progress of the player.

9. Punishment: Common types of punishment include the loss of points, powers,
and resources. Taking risks can be exciting, especially if there is a reward to
be gained. Players may value rewards more if there is a risk involved in gaining
them.

10. Freedom vs. Controlled Experience: This is about the amount of control
a player should be given. Game designers who want each player to have
a similar experience may tend towards providing a controlled and therefore
consistent experience.

11. Simple vs. Complex: The terms used here can be misleading. A simple
game can be boring or elegant. A complex game can be confusing or rich. An
example of how to make sense of this type of balancing is a simple set of rules
which enables complex strategies: easy to learn, hard to master.

12. Detail vs. Imagination: Giving detail the imagination can use is of essence.
The more details are provided, the less gaps can be filled by the imagination of
the players. Omitting detail on purpose may give greater results than trying
to relieve the players of their imagination.

The types of balancing mentioned above have been utilized during the balancing
approaches conducted in this project seminar as can be seen in chapter 5.2 table 8
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and chapter 5.3 table 9.

3.2 Data-driven Optimization Methods

This presentation gave an overview of core concepts of optimization techniques that
might have to be considered during the PS. Stochastic and heuristic optimization
as well as evolutionary algorithms (EAs) and practical implications of data-driven
optimization (DDO) were discussed.

Being at variance to the original optimization logic where we determine the ex-
act location of a local or global extreme (minimum or maximum values), DDO
techniques enable decision makers to make informed decisions using the limited
available historical data, and provide them with certain optimal guarantees. Opti-
mization problems are concerned with finding the values for one or several decision
variables that meet the objective(s) the best without violating the constraint(s).
However, precise knowledge of real-life optimization problems rarely is available,
inputs are not always reliably correct, and especially when it comes to analyzing
big data sets performance becomes a challenge. Thus, a mathematical framework
that is well-suited to the limited information and resources available is needed [Mar06].

Stochastic optimization techniques use probabilistic methods to solve problems.
They cope with inherent system noise and models or systems that are:

• highly nonlinear,
• high dimensional, or
• otherwise inappropriate for classical deterministic methods of optimization

[GHM12]

Stochastic optimization may be divided into three main approaches according to
[Mad60]:

1. Models with here-and-now decision: The decision is made before the
realization of parameters takes place. Optimality is reached mostly through
the expected value of the objective function over all scenarios.

2. Wait-and-see problems: It is possible to wait for the decision until the
parameters are realized. The goal is to calculate the optimal value for every
possible scenario.
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3. Expected value: Also here the decision is made before the realization of
parameters. In contrast to the here-and-now decision the expected value is
determined for each parameter. The problem is then solved using these values.

An example for a stochastic optimization problem would be the minimization of
production costs of a company without knowing the exact demand for the product.

Heuristic techniques or heuristics refer to the iterative search for satisfactory solutions
that are not necessarily optimal. The search process starts off with an arbitrary
initial solution, then iteratively produces new solutions by some generation rule
and evaluates these new solutions to finally report the best solution found during
the search process [Mar06]. Different classes of heuristics exist, among which con-
struction methods and local search methods belong to the best known. Construction
methods use a step-wise approach to build a solution to the problem where the best
choice at each step highly influences the solution. Contrarily, local search methods
do not explore the search space systematically, but improve an initial solution in
a progressive manner. Other well-known heuristics are: decomposition methods,
inductive methods, and reduction methods [MR11].

Being part of Computational Intelligence (CI), evolutionary computation are heuris-
tics that mimic the survival of the fittest-principle from biology by using a population-
based approach: an initial population is created and evaluated and by means of
recombination and mutation a selection of parents is used to produce a new gen-
eration of solutions. Different techniques of the evolutionary approach exist, using
different representations for the individuals of a population, for example:

• Genetic Algorithms, using binary strings
• Evolutionary Programming, using Finite State Machines (FSMs)
• Evolution Strategies, using real-valued vectors
• Genetic Programming, using trees

Since evolutionary algorithms (EAs) have been used heavily in this PS, further details
are outlined in 6.4.

Often the evaluation of parameter vectors is time-consuming and/or expensive
as for example described in [MS14]. A surrogate model is a method used when an
outcome of interest cannot be easily measured, so an approximation of the compu-
tationally expensive objective function is used instead [BDF+99]. The idea is to
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describe the relation between control variables and the observation through a model
or function. This is done by first creating the experimental design, gathering sample
data with which the surrogate is constructed and afterwards validated. If this process
was not satisfactory, it can be repeated until the desired results are achieved. Sample
methods that can be used for this are: First Order Response Surface, Generalized
Additive Model, Random Forests, and Kriging.

As a last topic, a general recommendation regarding the approach of new opti-
mization problems was given: according to [WM97] there is no optimal optimization
method. Hence, to tackle a new problem it makes sense to either adapt the algorithm
or the problem design. In the first case, an existing algorithm is adapted to the
problem in its current form. The latter case implies an appropriate formulation of
the problem for an existing algorithm.

At the end of the presentation, the main takeaways were summarized: The techniques
presented are used to guarantee certain optimality for decision makers. Mostly we do
not even know all variables that determine the output to be optimized - this is where
stochastic and heuristic methods can be applied. To improve or enable complex
evaluation procedures, surrogate models are an appropriate tool to consider. Finally,
there is no optimal optimization technique: one has to evaluate and adapt them.

3.3 Practical Examples: Unbalanced Games

This presentation covered examples of unbalanced game content from three different
games:

• StarCraft II (SC2) (Real-Time Strategy (RTS))

• Diablo III (D3) (Action Role-Playing Game (ARPG))

• Counter-Strike: Global Offensive (CS:GO) (First-Person Shooter (FPS))

The different games were chosen in order to give a diverse overview of game types.
Additionally the aim was to showcase popular games which are played in a competi-
tive environment. This ensures that they’re updated regularly in order to keep the
number of players high and keep the tournaments interesting.

Two perspectives were analyzed for this case. The first one being the view of
the game designer, who may ask himself:
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"What changes need to be made for the intended way to play the game?"

The second view is the one of the player, who may ask himself:

"How can I break this game?"

Game Theory Basics In order to establish a more common understanding of
what is balanced in a video game and what is not, game theory basics were used to
showcase the difference. The prisoner’s dilemma was used to introduce the idea of
game theory. The prisoner’s dilemma describes a situation where two individuals
have to choose a strategy, whether to confess to a crime or to keep quiet and say
nothing. To show the outcome of their individual strategies a payout matrix is used:

Prisoner B
Keep quiet Confess

Prisoner A Keep quiet −1,−1 −10, 0
Confess 0,−10 −5,−5

Table 2: Prisoner’s Dilemma Payoff Matrix.

The idea of this example is to show that there is a strictly dominant strategy, which
is a strategy that will always guarantee a higher payoff then any other available
strategy, meaning it doesn’t matter which strategy the other person chose. In this
case it would be the strategy Confess for both prisoners. The explanation for this
is that no matter what strategy Prisoner B chooses Prisoner A will always have a
higher payoff with Confess. The mathematical explanation of Confess vs. Keep
quiet : 0 > −1 and −5 > −10.

Strictly dominant strategies in video games would mean that a team or player
will always do the same in a game, which could be seen as unbalanced, especially if
the winning percentage of using this strategy is very high. An exemplary CS:GO
round could be displayed by this matrix:

Counter-Terrorists
Defend A Defend B

Terrorists Attack A 0.25, 0.75 0.6, 0.4
Attach B 0.6, 0.4 0.25, 0.75

Table 3: Generic CS:GO Round.

Counter-Terrorists (CTs), who need to defend bombsites from Terrorists (Ts), have
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a high win chance of 75% if the Ts focus on the same bombsite. However, when the
Ts decide to attack the other bombsite the win chance decreases to 40%. In this case
there is no strictly dominant strategy available for either side. But as we will later
see depending on the exploitation of unbalanced game mechanics this matrix can
change, enabling a strictly dominant strategy for one faction.

StarCraft II The RTS game StarCraft II: Wings of Liberty was released on the
27th July 2010 by Blizzard Entertainment. On the 12th March 2013 came the first
expansion pack Heart of the Swarm and on the 10th November 2015 was the second
one released, with the name Legacy of the Void. The game consists of a single-player
campaign and a competitive multiplayer environment with a ladder-system. Three
races are available for playing: Terran, Protoss, and Zerg. Blizzard Entertainment
describes the game with the following words:

"Wrangle some resources, build your base and raise an army to make
your enemies run and hide [Blie]."

The unbalanced game mechanic in this case was a unit called Warhound. It was a
unit that could be build by Terrans. It was introduced as an anti-ground unit with
bonus damage against mechanical units with is special ability Haywire Missiles. The
unit was intended to be released with the second expansion package Heart of the
Swarm. Players used the unit in the early game since it had low costs, but still high
damage output and a high amount of health. Blizzard Entertainment decided against
the release of the unit into the game, after letting players test the beta version of
the second expansion pack[Blid].

In a game theory context one could put the usage of the Warhound unit into
this payoff matrix:

Build a Terran B
Warhound? Yes No

Terran A Yes 1, 1 2, 0
No 0, 2 0, 0

Table 4: Should I build a Warhound?.

In this case it is quite obvious that not building a Warhound unit or multiple
Warhound units is a mistake. Building the unit always results in a positive payoff for
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either player. Therefore building the Warhound unit would be the strictly dominant
strategy in this game.

Diablo III The ARPG was released in its first version on the 15th May 2012. Two
years later on the 25th March 2014 the first expansion package called Reaper of Souls
was released. For the purpose of discussing unbalanced game content the newest
version of the game was used. The game features many different play modes like:

• Main campaign, which is the main story line of the game.

• Bounties, which are missions the player has to complete in order to get a
reward.

• Rifts, which are randomly generated dungeon where the player has to kill
enough monster to spawn a strong boss monster.

• Greater Rifts, which are similar to rifts but they have better rewards for the
player and are more difficult to complete.

The game can be played in two different main modes. The non-seasonal and sea-
sonal mode. In the seasonal mode the characters stay for three to five months
and the player has to start over. The characters are then transferred to the non-
seasonal mode, where characters and items are stored indefinitely. A player can
choose to play the game alone or with a party and can compete on leaderboards
for single-player mode or multiplayer mode. The main objective is to increase the
paragon level of a character, which gives the character increased stats. Six classes are
available for a player in Reaper of Souls. Three melee classes Barbarian, Crusader,
and Monk, as well as three ranged classes Demon Hunter, Witch Doctor, and Wizard.

The main issue many players had with the game in fourth season of Diablo III
was the competition between single-player and multiplayer game mode. Players who
grouped up gained a massive amount of bonus experience for their characters and
were therefore able to increase their paragon levels at a much higher rate than those
players who played solo. In addition to the experience bonus groups also gained a
bonus to finding gold and items in the game[Blia]. Additionally, players were able
to equip items that further increase the gain of experience, as can be seen on Figure 2.

Once again this example can be put into the context of game theory. In this
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Figure 2: Diablo III Item: Cain’s Insight.

payoff matrix 100 stands for a normal experience gain, i.e. 100%. 130 and 270 would
in this case mean a +30% or +170% experience gain. The example in Table 5 shows
that playing in a group of four players (Multi (4)) is beneficial in order to increase
the experience. Using additional experience items (M4 w/ XP) can further increase
the experience gain, almost doubling or tripling it.

Experience Player B
in % Single Multi (4) M4 /w XP

Player A
Single 100, 100 100, 130 100, 270

Multi (4) 130, 100 130, 130 130, 270
M4 /w XP 270, 100 270, 130 270, 270

Table 5: How do I gain experience most efficiently?.

A second issue many players had with the game in season three was the diversity
of classes used at the top of the leaderboards. In season three no Barbarian or
Monk was present in the Top 100 of the 4-player leaderboards[Blib; Blic]. The issue
was heavily discussed in the Diablo III forums and even Blizzard Entertainment
employees talked about these issues. John Yang (Game Designer) said that he "will
never be happy with build diversity until every build is completely equal in power
level for both the top players and average players.[Yan]"

Counter-Strike: Global Offensive The FPS was released on the 21th August 2012.
The game was developed by Hidden Path Entertainment and Valve Corporation. It
is a round-based FPS in which two factions, Ts and CTs, have to fight against each
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other. The objective of the Ts is to plant a bomb at one of the two bomb sites on
the map, while the CTs have to hinder them. Ts and CTs have access to different
kind of weaponry and the overall goal of a game is to win 16 out of the 30 rounds
played. In general the maps which are played competitively are often sided towards
one of the two factions.

One example for the abuse of an unbalance game mechanic was a so-called triple boost,
where three players were climbing on top of each other. This way the player on top is
able to overlook a huge part of the map de_overpass. At the Dreamhack Winter 2014
tournament the Swedish team Fnatic was playing against the French team LDLC.
The first half of the game ended 12-3 in favor of LDLC. Fnatic was able to turn it
around and win the game with 16-13. They abused the game mechanic in order
to kill the players of the French team without them being able to see the shooter[Dre].

Using this strategy in context of game theory can result in the following payoff
matrix:

Counter-Terrorists
Defend A Defend B Boost

Terrorists Attack A 0.25, 0.75 0.6, 0.4 0.01, 0.99
Attach B 0.6, 0.4 0.25, 0.75 0.01, 0.99

Table 6: de_overpass Payoff Matrix with Boost.

As one can see in Table 6 using the Boost strategy is strictly dominant for the
counter-terrorists and they will therefore use it every chance they get. Leaving
the terrorists with just a very slim chance to win the round and thereby changing
the entire game. However, using this strategy was against the rules of the tour-
nament and Fnatic had to withdraw from the tournament shortly after the game[Fna].

Additionally to map design the different available weapons of CS:GO also cause
unbalanced games. Two pistols in particular were heavily changed over the course of
a few months. The CZ75-Auto which is available to both Ts and CTs, and the Tec-9
which is only available to Ts.

The first one was regarded as a good weapon to be used while running, because it
had a high accuracy while running, as well as being a formidable starting weapon
since it allowed for quick kills and rewarded a relatively high amount of money (300$)
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compared to its costs (500$). Later the damage, draw time, reload time, and kill
reward money were changed in order to accommodate for the other benefits of the
weapon[Vala; Valb].

Take-Away Balancing games isn’t just a one-way undertaking. Game developers
and designers have to listen to their player base in order to keep their game up-to-date
and fix bugs. Oftentimes designers rely on the feedback and are actively asking for
it, e.g. in the form of alpha and beta tests. Players are looking at the game from
another angle and try to actively see how they can destroy the game. Exploits, bugs,
and problems with the game can be discovered this way. The dialog between game
developers and players is really critical for the success of a game and the longevity.
Abandoned games lose their player base because they’re not fun to play.

3.4 Practitioner’s Perspective on Game Balancing

Game balance is a topic for which many definitions often seem to fall at odds with
one another [Jaf13]. For illustration, Technopedia.com defines game balance as “a
video game design concept where the strengths of a character or a particular strategy
are offset by a proportional drawback in another area to prevent domination of one
character or gaming approach” [Tec]. Another example would be the definition from
Wikipedia.org: “game balance is the concept and the practice of tuning a game’s rules,
usually with the goal of preventing any of its component systems from being ineffective
or otherwise undesirable when compared to their peers” [Wik]. Moreover, at this
project seminar game balance was defined as “the small changes to a game (basically
parameter adaptation) in order to satisfy predetermined goals”. Nevertheless, all of
the listed definitions view game balancing as the tuning or small changes to a game
parameters, rather than vast changes to the game itself.

In addition to these definitions, there exist different perspectives on the process of
game balancing. Existing perspectives on game balancing can be summarized as
following:

1. Game balancing as Options. This perspective is inspired by David Sirlin, a
fighting game and board game designer. Sirlin published a handout for his 2009
Game Developer’s Conference talk Balancing Multiplayer Competitive Games,
which probably serves as the most succinct description of his definitions and
views of game balance [Sir09]. He goes so far as to offer a precise definition
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of balance: “A multiplayer game is balanced if a reasonably large number of
options available to the player are viable - especially, but not limited to, during
highlevel play by expert players". The core of this definition concerns options.
This is clearly more broad than a single notion that a game should be ’fair’. In
fact, Sirlin is careful to distinguish two varieties of balance:

a) Viable Options (during a game): The player must have many meaningful
choices throughout a game. The choices must be materially different from
each other, not worthless, and not dominated by other choices. To make
the game deeper, the choices should not be exactly equal in value at all
times.

b) Fairness (options before a game starts): Players of equal skill should have
an equal chance at winning even though they might start the game with
different sets of options / moves / characters / resources / etc.

A final noteworthy message from Sirlin is this: "game balance is so complex as
to be inherently unsolvable. If it were solvable, your players will solve it and
stop playing. Intuition, not math, is the best tool to navigate high-complexity
problems. Creating a game and seeing how its balance turns out takes years"
This is because players’ own views of a game develop slowly over time, and the
"true" balance of a game is always contingent on the players.

2. Game balancing as Rapid Iterations. This perspective is inspired by
Jaime Griesemer, a designer of first-person shooters and action games. In
a 2010 talk at the Game Developer’s Conference, he captured some of the
intricate challenge of the balance process of Halo 3, anchored by the story of a
single balancing decision [Gri10]. In leading up to his discussion of balancing
Halo 3 ’s sniper rifle, Griesemer describes many facets of the balancing process.
In particular, he goes into lengths to disabuse his audience of the idea that
balance is just fairness. In balanced games, each strategic element should
have a distinct role. Such a role specifies not just its mechanics, but also the
aesthetic feeling of using it. Griesemer’s talk emphasizes the importance of
frequent playtesting with rapid iteration. Only through extensive iteration
and a focused design plan is it possible to let each strategic choice operate
in synergy. Moreover, an insightful segment concerns the variety of players
who might playtest a game, and how designers should take different forms of
insight from each of them. He defines six example kinds of players, and the
most useful kind of takeaway each can provide:
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a) Optimizers: By "playing to win", these players will find discover dominant
or strong strategies

b) Skeptics: These players’ complaints will direct designers toward the most
dissatisfying, unfair, or frustrating aspects

c) Specialists: These players will play in a particular fashion regardless of
its effectiveness, thus providing an unbiased view of the strength of core
components

d) Novices: Bad or new players reveal difficult or confusing components

e) Griefers: Just as optimizers seek the best way to win, these players seek
the best way to frustrate other players, thus mapping the least pleasant
edges of the design space

f) Professionals: Tournament-level players tend to value predictability, and
thus these players will point designers toward segments of play that feel
too unpredictable.

3. Game balancing as Science. This perspective is inspired by Alexander
Jaffe, data and design Person for Spryfox and the author of Understanding
Game Balance with Quantitative Methods. He defines game balancing as the
“meaningful diversity of gameplay experiences” [Jaf13]. Furthermore, he stated
that it is possible to think of each aspect of the experience (be it strategy,
fairness, win conditions, duration, randomness, etc.) as defining an axis of
game balance, often orthogonal. Meanwhile, the world meaningful is used to
refer to the player’s choices and consequences; meaningfully diverse experiences
should be noticeably different in terms of choices and outcomes, not purely
aesthetics. Under this definition, a certain kind of balance is not necessarily a
desirable property of a game, it is simply a property to which designer attention
should be paid. Jaffe states: “most strategically interesting games are indeed
not feasible to solve exactly. Yet this in no way prevents us from applying
mathematical reasoning to game balancing [. . . ] I do not claim that balance as
a whole can be formalized, but rather that formal measures can deeply inform a
designer’s understanding of balance”. Thus, game balance can be understood
through the effectiveness of explicitly modeled players, and Jaffe states that
many forms of game balance can be reframed as the success of some restricted
mode or method of play.

4. Game balancing as Art. This perspective is inspired by Jesse Schell, a
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game designer and educator, writer of The Art of Game Design [Sch14], a
critically acclaimed guide to many facets of game design. Schell’s book features
a prominent chapter on game balancing, which presents balance in its broadest
interpretation. He defines game balancing as “nothing more than adjusting the
elements of the game until they deliver the experience you want". The goals
of game balancing that were defined by Schell and introduced in this paper
at the chapter 3.1 Goals of Game Balancing, according to Schell, must be
considered at once during the balancing process. Mechanical changes affect
all twelve of the above axes, and design decisions must tradeoff between all of
them simultaneously so as to capture the intended experience. This kind of
nuanced experience is exactly what balance is all about.

The main takeaway from these four diverse characteristics of balance is that game
balancing is indeed a difficult concept to pin down to a single definition. Most
notably, it is possible to see that each of the four designers’ understanding of balance
is broader than the last, but still there is no common definition of game balancing in
industry.

3.5 Artificial Intelligence Methods: An Overview

Artificial Intelligence (AI) plays an important role in automated game balancing.
Indeed, the general concept of automated game balancing is to replace a human
tester by a capable AI. However, one important assumption has to be made: the
implemented AI is able to imitate the behavior of a real tester with a high degree
of approximation. This assumption should stand true, otherwise the optimization
process balances the scene against not real and possibly misleading behavior. From
the other side, AI should be considered from the standard game perspective where
AI is developed for NPCs.

The general concept of AI originates from the pioneering work of Turing [Tur50]
where famous Turing Test is proposed to assess the quality of AI. The idea of the test
is to fool an interrogator which decides either he communicates with a human being
or with an AI. From that perspective the AI should be able to think and act humanly,
however modern approaches do not only consider this from that perspective, but
also add rationality of behavior. Indeed, according to Russell and Norvig [RNI95,
pp. 5-7] an AI can be defined as any system, designed to perform human tasks,
that thinks and acts both humanly and rationally. The above definition is rather
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general and describes the generic AI, however modern games require more complex
AI which can focus on player experience and is able to adjust appropriately. That
leads to the concept of a "fun AI" that is highly utilized in games. It can be seen
from Table 7 that the "fun AI" diverges from the general concept of a "good AI".
Indeed, it focuses more on player experience and is aimed to be challenging enough
for player. From that perspective it is not developed to pass Turing Test, but rather
to be interesting for player.

"Good AI" "Fun AI"

focus on human substitution focus on player experience
tries to beat player tries to compete with player
coherent with Turing Test irrelevant in terms of Turing Test

Table 7: AI Concepts.

From the game perspective AI methods are special algorithms that are able to imitate
behavior of humans or animals within the game [MF09, p. 4]. Since recent games are
becoming more complex, where a lot of elements should have their own behavior, it
would be unrealistic to have one AI method for the whole game. Therefore, normally
the overall game AI model consists of a set of methods which together represent it.
Figure 3 shows that the AI model includes different levels where a decision should be
made in given computational time using the information provided. Thus, at every
level one or another method is more appropriate which results in the model of AI
rather being an ensemble of methods.
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Figure 3: The Model of AI.

Source [MF09, p. 9]

According to Preuss [Pre16, p. 22] there are three primary research streams of AI
methods: specialized algorithms, Machine Learning (ML) approaches, and Compu-
tational Intelligence (CI). Specialized algorithms are mostly designed to perform
specific tasks such as pathfinding or movement. Typical examples of ML approaches
are reinforcement learning and tree search. CI is a rather new research area which
includes Evolutionary Computing (EC), Fuzzy Logic, Artificial Neural Networks
(ANN), Monte Carlo Tree Search (MCTS) and others. Different techniques can be
prevalent in different situations and at different levels of the AI model. Therefore,
they are used jointly.

Strategy and decision making There are three primary AI methods for the
decision making process which cover a wide range of arising game tasks: state
machines, decision trees, and behavioral trees. These methods are rather simple,
but extremely powerful and versatile. The central idea of the methods is, having
exhaustive information about possible actions and the environment, construct a
set of rules which define behavior of a unit. In order to represent these rules the
methods use different data strcutures; for example, decision trees use acyclic graphs
to capture behavior. These methods were applied in such complex games as Halo 2,
Anno 1404, and Bioshock. Of course, the methods are still developing; for example,
more complex hierarchical state machines are proposed. Lim et al. [LBC10] pro-
pose an adjustment of behavior trees for a game using recent optimization techniques.
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Most board games, like chess or Go are deterministic with perfect information.
Thus every player knows all the possibilities and can construct a game tree with all
the variants of game outcomes. The tree can be further traversed in order to find the
best action. The most simple way to traverse game tree is to use min-max tree search.
This method uses the proposition that the game is a zero-sum game, therefore the
opponent tries to minimize the outcome while the player tries to maximize it. Of
course, this method cannot be applied in most of the cases because it considers all
possibilities, therefore it is generally enhanced by the alpha-beta pruning technique
which decreases the search space. The enhanced approach has been proven to be
effective, famous chess program Deep Blue utilized it in order to beat world champion
Garry Kasparov in 1997. However, this technique has a lot of disadvantages. First, it
can be purely applied only for deterministic games with perfect information. Second,
this method is not generally any-time, since final decision about the best action
is done in the end of search. Third, the branching factor is still a bottleneck of
the approach in most of the cases. These challenges can be relatively well solved
by a new computational technique which is called MCTS. This method develops
the concept of a multi-armed bandit in order to find the best actions. The central
concept of MCTS is to repetitively explore "good" paths in game tree, randomly
simulating and back-propagating game outcomes. This algorithm is very versatile
and requires minimal expert knowledge. However, it can be enhanced in many ways.
For example, the selection policy can incorporate patterns in order to prune weak
paths. MCTS has become a good solution for a relatively strong AI, it is widely used
in industry from board games (AlphaGo) to real-time strategy games (StarCraft,
Total War). Theoretical studies of MCTS also can be found in literature [CBS+08;
BPW+12]. However, the method has two main disadvantages: it should be properly
parameterized and generally it is very intense computationally.

Strategy and decision making in games is a relatively generic process and can
be supported by other methods which were originally developed for other purposes.
The first method are EAs. Indeed, it is a robust problem solver which fits even as a
game AI. Another method is Q-learning, it incorporates the concept of reinforcement
learning and fit for the games where units should learn about the environment by
themselves. Recently, Fuzzy Logic systems are tried in game industry [PKH+13], in
addition ANN are commonly used to capture patterns and support main algorithms.
One example of such support is Go AI AlphaGo which utilizes the concept of ANN
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in order to use it for simulation and pruning within MCTS.

Movement The key movement task in most of the games is pathfinding. A com-
monly used pathfinding algorithm in game industry is A*, it originates from the
work of Hart et al. [HNR68]. A* finds the shortest path between two points using
heuristic which biases traversing to get solution faster. However, this algorithm does
not guarantee optimality in case of inconsistent heuristic. The concept of influence
maps is commonly used to support A* in navigation tasks. The general idea of
influence maps is that every game element influences the game to some degree. These
influences interfere with each other creating a final potential for a certain game
spot. A similar approach is proposed by Hagelbäck [Hag12], he introduces potential
fields which incorporates the same idea of interfering influences, but influence can
change according to behavior of a unit. Combination of A* and influence maps
or potential fields is relatively good approach to tackle with movement problem in
games. Recent concerns about believable behavior pushed forward another movement
related technique which is known as flocking. The main concept of flocking is that
during movement in squad every unit is exposed to three forces: separation, cohesion
and alignment. Recent studies prove that flocking seems to be rather promising for
real-time games [DST+08].

AI methods are a relatively huge area which consists of a variety of techniques.
These techniques do not substitute each other, but rather complement eliminating
the mutual limitations. Depending on a context one or another method can be
chosen, where in the end the whole ensemble of methods represents AI model for the
game. Of course, AI methods develop very fast, however there are a lot of challenges
have to be met and overcome.

3.6 Procedural Content Generation

“Procedural content generation refers to the creation of game content
automatically, through algorithmic means."[TYS+10]

Game content encompasses all aspects of a game that affect game-play, however
it excludes NPC behavior or the game engine itself [TYS+10]. The method of
Procedural Content Generation (PCG) can speed up game development, save human
designer effort/cost, complement human creativity and extend the life-span of a
game. The method of PCG can be applied either in the following way: [TYS+10]
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1. Online vs. offline

2. Necessary vs. optional content

3. Random seed vs. parameter vectors

4. Stochastic vs. deterministic

5. Constructive vs. generate-and-test

The method of PCG can assist in balancing games in the form that new content is
algorithmically generated based on some evaluation criteria that implicitly follows
balancing goals. The evaluation can be a direct measure on the created content or
an indirect measure that is delivered by a human or artificial player. An applied
example from research shows that PCG has the potential to not fully solve the
balancing problem but reduce manual labor [CR15].

3.7 Dynamic Difficulty Adjustment

Definition Dynamic Difficulty Adjustment (DDA) is a modern approach to modify
difficulty during runtime of a game by evaluating user performance and changing
key parameters accordingly in order to maintain a challenge for the player [Hun05].

Difficulty Flow As such, DDA resembles an evolving prediction problem, having
to keep track of the player behavior. The goal of the adjustments during the game is
to keep the difficulty in a conceptual Flow Channel where the player is alternated
between over- and underperforming as depicted in the figure below:

Figure 4: Difficulty Flow Channel.

Thus, the game is kept challenging even if the player does not follow a traditional
difficulty curve [Hun05].
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DDA Process Listing 1 presents a simple Pseudo-Algorithm for DDA. In the
beginning, a starting difficulty is chosen by the player (e. g. easy, normal or hard).
Then, the iterative difficulty adjustment process is called every time a “trigger” point
is reached in the game. Trigger points are determined by the designer and can for
example either be set after certain enemies, after a certain time period or after
certain objectives are reached.

The difficulty adjustment process then places the player in an area of the flow
channel. The three category areas are resembled by numerical ranges between 0 and
1: Underperforming (0-0.4), Challenging (0.4-0.6) and Overperforming (0.6-1). If the
player results until the trigger are in the Underperforming area, the difficulty level is
lowered. If the player results are in the Overperforming area, the level is raised.

Listing 1: Dynamic Difficulty Adjustment Pseudo-Algorithm.

1 INITIATE with predefined level (easy or normal or hard)

2 OBSERVE player results until trigger(result observe(t))

3 foreach (trigger)

4 {If (observe(t)n-1 <0.4)

5 {lower difficulty in moderation ;}

6 Else if (observe(t)n-1 >0.6)

7 {raise difficulty in moderation ;}

8 Else {difficulty is appropriate ;}

9 OBSERVE new observe(t);}

3.8 Balancing Applications in Other Domains

Balancing does not only take place in the context of games, but also in other domains
with human actors and systems. A brief exploration of applied balancing in non-game
related cases was conducted to examine the application of balancing in different
contexts and possible insights for the future project. Three exemplary cases were
investigated, of which each one represented another field of application. The covered
topics included load balancing [RDJ+06], computational mechanism [CCP99] and
competition in networks [MAK+07]. Even though each case dealt with a different
topic and used a different approach, the core characteristic of balancing was identified
as an optimization problem connected to a limited amount of resources. Whether
it was the limited bandwidth in the example of load balancing, the limited server
capacity in the example of computational mechanism or the limited road capacity
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in the example of networks, a limited amount of accessible resources lead to the
search for a configuration or setup which provides the most efficient use or the fairest
distribution of the resources.

All cases showed that balancing in form of an optimization problem needs certain
preparations. Crucial is the representation of relevant and important information.
Information therefore should be transformed in a quantifiable representation. For
the representation of information different approaches can be used, as e.g. the
Fisher-information in the example of load-balancing, which was used to represent
the value of the carried information of each agent. Furthermore the approach should
include an objective function to represent the degree of “goodness” of a possible
configuration or setup. In the example of computational mechanism and server
capacity such a function could be used to calculate the response time of server and
the optimization problem would aim to minimize this response time.

Overall, balancing in other domains than game development is used to provide
a fair and efficient way of distributing limited resources among participants by
solving an optimization problem.

3.9 Game Balancing by Computational Mechanism Design

The usage of computational mechanism design for game balancing is part of recent
research. Insights into an ongoing PhD study were provided to us in advance of the
project’s main work with the idea of giving a first understanding of computational
mechanism and the possible application in the project. The key insights and take-
aways are summarized in the following part.

There are different motivations for approaching game balancing by computational
mechanism design. From the perspective of game developers computational mecha-
nism design could face the optimization potential in the balancing process, which is
currently an expensive and tedious process. A successful application in the context
of game balancing could in addition provide researchers with the opportunity of
transferring such application to other systems and real-world problems. Even though,
there are potential improvements identified, there are several challenges and problems
to face. The application of computational mechanism design in the balancing process
should be robust in a way that it should only need small adjustments over time, has
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to deal with multi-objectivity and has to go along with the rules and underlying
physics of a game to go along with game-crucial aspect as immersion. Beyond this,
the formalization of a system or player goals is necessary but difficult to realize.
Talking about balancing in general, the motivations and problems of balancing have
to be considered. The goals of balancing are motivated by different point of views,
as for example gameplay concerns like difficulty adjustment, design decisions like
immersion or economic reasoning like the relevant target audience.

Balancing itself can be viewed as an optimization problem with different objec-
tives which can be game-related as well as more general. One way to face such
problem is through game theory. Game theory is used as a forward model to deter-
mine actions or strategies in a game, but struggles with the limitations of manual
optimization and is not automated. Using computational mechanism and the au-
tomated search with simulation data represents another way, but to face the idea
of an automated search with simulation data, several challenges have to be faced.
First, the design goals have to be defined. The goal can be a challenging game or
a game that is fun or fair. Second, the problem itself has to be formalized. Game
theory can help in this case to approximate utility functions and an optimization
problem. Third, the computational mechanism design has to provide characteristics
like robustness.

Overall, computational mechanism design shows to be a reasonable approach for
game balancing, but goes hand in hand with additional preparations and adjustments
that have to be considered.

3.10 Main Findings of the Literature Analysis

The above-provided set of research streams provide an extensive representation and
overview of the current understanding in research about modern computer games
and applied CI techniques to perform certain tasks. It does not raise the claim of
being fully exhaustive. However, no canonical approach could be identified in which
researchers dedicated their work towards finding an automated way in balancing
game parameters. This finding is supported by [YT14] and [Luc08]. None of the
below analyzed research streams revealed any methodology of applying CI techniques
dedicated explicitly to game balancing.
The intention of balancing is implicitly included within each of the depicted game
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Figure 5: Panorama of AI research, [YT14] Fig. 2.

AI/CI areas of figure 5. For example, in PCG it is the underlying the intention to
generate game content that satisfies a positive player experience and is therefore
balanced. However, the explicit intent of game balancing is not yet included.

In conclusion, this provides an opportunity to investigate a gap that may be of
high interest for both researchers and practitioners. In practice the task of game
balancing is often done manually, which holds true at least for the industry partner
of this PS, who demonstrated their manual approach in a project meeting. It should
be noted, that no information is available about the on-goings of the entire game
industry (e.g. some sort of survey ).
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4 Project Organization

In projects with highly unpredictable development, including aspects like the direction
of development or possible obstacles, flexibility is the core need for the applied
management methods. A short explanation of the organization and the management
of the project is given in the next chapter, to provide an understanding of the project
team’s working method.

4.1 Project Set-Up

The basic idea of the project seminar as a research seminar with mainly open devel-
opment directions provided reasoning for an agile approach of project management.
The project followed an agile approach of project management. As a reference
served the Scrum framework, rooted in agile software development. The simple
methodology, the distinct defined roles and artifacts enable an enactment and use
of this framework without preliminary knowledge of agile methods. The project
consisted of the project team, represented by eight master students from the field of
information systems and three supervisors, two representatives from departments
of the university, completed by a PhD student whose research overlaps with the
projects topic. The project was set up for a time of one semester, around six month.
Even though, the project seminar did not represent the typical setup for the Scrum
framework, the methodology of Scrum was adapted to the circumstances of the
project. While the main aspects of the Scrum framework were applied, other aspects
where left out since they were seen as not feasible for the project.
The general project process is visualized in the following graphic.

4.2 Application of Management Methods

The basic idea to work in short iterations, so called sprints, was used during the
whole project. Sprints were usually around a week long and weekly meetings with the
supervisors encouraged the project team to break down work in smaller work packages
and present their progress every meeting. The meetings served as an opportunity
to inform the supervisors about the progress of the last week as well as to discuss
recent developments together and set or change work packages for the next week.
For the coordination and communication with the supervisors two students were
chosen from the team to fulfill a variation the Scrum master role. These two students
organized the coordination and communication with the supervisors. Structuring
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Figure 6: General Project Procedure.

the work helped the team to identify work packages and keep them as modular as
possible. In retro perspective, the team divided the work into three main streams:
The ZVG, the 2DR game and the data analysis. The team split up to work on the
different stream and broke down the work in even more detailed work packages, as
e.g. for the 2DR into AI and algorithm implementation, or for the data analysis into
e.g. evolutionary algorithm and meta-optimization. Every internal meeting of the
team began with a so called “daily scrum” where the team stands together for 10
to 15 minutes and everyone shortly talks about the open tasks on the Scrum board
with following questions in mind:

1. What have I done/achieved since the last meeting?

2. What is my plan for today?

3. Are there any impediments that hinder me in my current work?

4.3 Tools Used

In addition the coordination and communication were supported by different tools.
Trello served as a digital Scrum board, Dropbox and Google Drive were used for
document sharing and Git was used to work on code in parallel. The selection of
the tools was based on the students’ experiences with the tools and the provision by
external partners (GitLab provided by University of Muenster).
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5 Game Description

5.1 Gameplay Environment Setup

In order to begin play-testing the game, it is required to download and install Unity,
a development suite for creating multiplatform 3D and 2D games. A personal edition
can be downloaded for free. This edition sufficed to fulfill all necessary development
goals in the context of this project seminar.
After installation, Unity first requires to open a project. Within a project the user
has access to scenes and assets of the game. An asset is a representation of any item
that can be used in a scene. Types of assets are commonly classified into image files,
model files, meshes and animations, audio files or other texture materials. Unity also
offers to import complete asset packages.
For scripting, Unity uses C-Sharp (C#), a class-based and component-oriented pro-
gramming language. The C# scripts are embedded and integrated within components
of Unity. Components are the functional elements of game objects and define their
behavior. Game objects do not perform behavior by themselves but are merely the
container that can hold different elements that define the game object.

5.2 The Zombie Village Game

As introduced above, the data-driven analysis of this project seminar is based on a
game prototype provided by Blue Byte. The game and its source code were provided
via Gitlab and exclusively applicable within the Unity game engine. The provided
prototype included main assets and scripts as well as a text-file that described the
current and intended gameplay. The text-file informs that "the idea behind the
game is to build and manage a camp invaded by enemies", which classifies the game
as a Tower Defense (TD) game a sub-genre of Real-Time Strategy (RTS) games.
However, the concept of placing static towers to kill creeps [Rum11]; [ATA+11] is
replaced in the form of player units that can be placed freely on the map and attack
Zombie-like units.

[Sch14] defines twelve types of balancing that are used here to describe balancing
of the ZVG. The first of them is Fairness : Games can be asymmetrical or symmetri-
cal. Symmetrical games "give equal resources and powers to all players" ([Sch14]),
asymmetrical games respectively don’t. The goal should be to balance the game s.t.
it feels fair to the player. The next type is about keeping the player’s experience
balanced between Challenge vs. Success, for example by increasing the difficulty
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for each level. The goal here is to keep the player from being bored (too much
success) as well as frustrated (too much challenge). The Meaningful Choices-type
is about providing choices to the player that have actual impact to the outcome of
the game. Doing this, balancing should make sure that the player is feeling freedom
and fulfillment by having exactly as many choices as desired. Skill and Chance are
two opposing forces in a game, for which the balancing goal depends very much on
the player, since the decision about how much skill versus how much chance should
be needed to win a game is very subjective. In terms of how a game should be won
it is also important to balance it with regards to Competition vs. Cooperation. A
game can be either competitive or cooperative or a combination of both with certain
emphasis of one of these forces. Another balancing type for keeping the player from
being frustrated or bored is about the length of the game (Short vs. Long) which
is very much self explaining. In order to achieve a certain retention of players by
keeping them happy, Rewards are a good measure. Having many types of rewards
within your game is generally desirable. In contrast to this, Punishment should be
used carefully. It is useful however, to make the player use caution and evaluate risk
in certain game situations. Another type of game balance is the degree to which
a player gets Freedom vs. Controlled Experience. The emphasis here lies on the
creation of a better experience for the player. Another goal is to achieve the right
level of Complexity vs. Simplicity. The guideline here should be to create meaningful
complexity by means of a simple system. Finally, it is important to note that the
game does not create the experience alone but that it is about Detail vs. Imagination.
The game is considered to be balanced regarding this type if provides enough details
for the player to understand it and still leaves enough room to inspire imagination of
the player.
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Goal Application

Fairness "Zombie Village" is an asymmetrical game that
should most importantly provide interesting chal-
lenge to the player. The player should however feel
capable of beating the NPC which implies fairness
of the game.

Challenge vs. Success Players should consider "Zombie Village" to be a
challenging game but should be successful (=win
the game) in most of the cases.

Meaningful Choices Meaningful choices are provided to players by letting
them decide about the placement and removal of
the player units with is the core action of the game
and highly impacts its results.

Skill vs. Chance The focus of the game lies on player skill rather
than chance. The strategy together with the player
experience should decide about the game outcome.

Competition vs. Coopera-
tion

Since this game does not include multi-player modes
so far, it is a purely competitive game.

Short vs. Long "Zombie Village" is a mobile game designed with
different levels each with different complexity. Gen-
erally, a player should be able to finish a level in a
short amount of time, roughly meaning less than
five minutes.

Rewards Rewards are currently implemented by displaying
a success message.

Punishment The player has to collect junk in order to stay alive
and be able to win the game, otherwise he/she gets
punished by loosing.

Freedom vs. Controlled Ex-
perience

Placement of player unit is free but at the same
time limited due to the boundaries of the scene
map.

Complexity vs. Simplicity The rules of the game are very simple, a certain
complexity is given through the set up of the levels.

Detail vs. Imagination At the current stage of the game it does not make
sense to apply this.

Table 8: Balancing goals for the ZVG.
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5.3 The 2D Roguelike Game

The used game is an exemplary Unity tutorial. The game can be classified as a
mixture of infinity runner and dungeon crawler, in which the player has to try to
reach the exit on the map to survive a day in the context of the game and thus reach
the next level. As an overall goal the player should aim to survive as many level
as possible. Starting from the bottom right corner of a 64 fields containing map,
the player has to overcome obstacles in form of walls and enemies to reach the exit
on the top right corner. The player starts the game with a certain amount of food,
which serves as a health indicator of the player’s unit. Each attempted move as well
as each hit of an enemy reduces the amount of food. If the food count reaches zero,
the game is lost. Food tiles are placed on each levels map to provide the opportunity
for the player to refill his food count by a certain amount, by collecting such food tiles.

The main game elements are therefore:

1. The player unit, which is controlled by the player.

2. Enemy units, which are placed randomly on the map and move towards the
player and attack him, if in distance.

3. Destructible walls, which are obstacles for the player on the way to the exit.

4. Food tiles, which are optional pickups for the player to regain food.

As for the ZVG, [Sch14] twelve types of balancing are used to describe the balancing
of the 2DR game. An explanation of these twelve types can be found in chapter 5.2.
The balancing goals for the 2DR game are:
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Goal Application

Fairness The player should be able to identify some kind
of increasing difficulty with levels and be able to
reach further levels with learning and improving his
gameplay.

Challenge vs. Success Players should consider the game to be challenging.
The player should aim to improve his reached level
with every play through.

Meaningful Choices Meaningful choices are provided to the player by
letting him decide about the route he takes to the
exit or the optional pickup of items on such a route.

Skill vs. Chance The focus on the game lies on the player’s skill
rather than chance. The player’s strategy and
his experience should decide about the game out-
come. There’s partially provided chance in the
game through the random placement of elements
in each level.

Competition vs. Coopera-
tion

Since this game does not include multi-player modes,
it is a purely competitive game.

Short vs. Long The game is supposed to be played in a short
amount of time, roughly meaning in less than five
minutes.

Rewards Rewards are currently only given by displaying the
reached level after losing the game.

Punishment The player can be hit by an enemy unit (multiple
times), if he does not plan his path best. Loosing
food due to inefficient planning is used as punish-
ment.

Freedom vs. Controlled Ex-
perience

The player can move freely on the map, but only
in the given 8x8 field sized map.

Complexity vs. Simplicity The rules of the game are very simple and is kept
through the levels.

Detail vs. Imagination At the current stage of the game and the given
simplicity of the game it does not seem to make
sense to apply this.

Table 9: Balancing goals for 2DR.
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6 Build of the Balancing Environment

6.1 General Methodology

This chapter will outline the purpose and functionality of the BE. The BE performs
tasks in a service-oriented manner. It represents the combined setup of a game
scene, a set of game parameters, a game goal, a fitness function, a player AI and an
optimization algorithm, which are loaded into the public class BalancingSuite.cs.
The following table contains an example set for inputs.

Input Input Version

Scene Scene #006: Player(s) vs. Zombie(s) with Resources
and Buildings

Goal (Winning condition) Kill 40 zombie units
Player AI AggressivePlayerBehaviour
Algorithm Genetic Algorithm
Fitness function Distance to sum of remaining player health

Table 10: Sample Set for Input of the Balancing Environment.

Based on the specified inputs, BalancingSuite.cs will initialize the operation. It
first instantiates game parameters based on the predefined types of parameters and
their permissible set of value ranges. Secondly, it initiates a loop that generates new
solutions until a predefined condition has been reached. The loop runs and evaluates
the current instance of the game scene by applying the player AI goal, current game
parameters to the game scene and computing the result against the fitness function.
After each run-time, the simulated instance reports the values in the form of the
current solution. If the termination criteria have not been reached, the loop continues
to redefine and replace the current game parameters with new ones based on the
heuristics of the algorithm. The following Pseudo-code reflects the general behavior:
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Algorithm 1: Pseudocode of the Balancing Environment
Data: game scene, set of game parameters, fitness function, set of player AI,

optimization algorithm
Initialize balancing environment with game scene, set of game parameters,
fitness function, set of player AI, optimization algorithm;
Set current game parameters to initial seed from set of game parameters;
while Termination condition is not satisfied do

Set current solution to evaluation of game scene, current game parameters,
fitness function, set of player AI;
Report current solution;
Set current game parameters to new game parameters of optimization
algorithm

end

Return best solution of optimization algorithm;

The following sections will explain in detail each of the required components.

• Game Scene (chapter 6.2.1)

• Game goal (chapter 6.2.2)

• Player AI (chapter 6.3)

• Fitness function (chapter 6.4)

• Set of game parameters (chapter 6.4)

• Optimization algorithm (chapter 6.4)

6.2 Game Scene

6.2.1 Scenes

Scenes in the Zombie Game are realized by combining available Prefabs in Unity.
A limited number of Prefabs are considered to be the main elements of the game,
namely: player units, zombie units, resources, and buildings. A scene features at least
two different game elements from this list. At most, all four different game elements
are featured in a scene. The scene featuring all four game elements is called Main
scene (Main.unity and was provided by Blue Byte GmbH together with the ZVG.
Furthermore, Blue Byte GmbH provided a scene featuring player units and zombie
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units. The following list comprises all scenes that can be created by combining game
elements according to the aforementioned constraints. Please note that scenes not
featuring player units have been omitted from the list, since scenes without player
units are not suitable for approaches at non-manual game balancing using player AI.
In total six scenes were created:

1. Player units and zombie units

2. Player units and resources

3. Player units, zombie units, and resources (SceneToBalance.unity)

4. Player units, zombie units, and buildings

5. Player units, resources, and buildings

6. Player units, zombie units, resources, and buildings (Main.unity)

Each scene features a certain number of non-game element Prefabs required for the
scene to work properly. These non-game element Prefabs are the same for each
scene. For this reason, a scene template was created which featured all the required
non-game element Prefabs, namely:

• Cheats

• ClientGameLogic

• Directional Light

• EventSystem

• GridDisplay

• GuiResources

• IngameMenuCanvas

– FastPlaceMenu

– ObjectivePanel

– PlaceObjectContainer

– ResourceInfoPanel

– ResultPanel
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• Main Camera

• Missing Prefab

• ModifyGameParameter

• Zone Border Stone

This template has been reused several times, each time extended with different game
elements according to the list mentioned above. The scene featuring player unit,
zombie units, and building showed two bugs which could not be resolved.

1. If a player unit enters the detection range of a zombie while the zombie is
moving towards a destructible wall, the zombie will “focus” the player unit and
not attack and destroy the destructible wall. Instead, the zombie will get stuck
in front of the wall. This is true for all three different zombie unit types (AStar,
MoveDirect, and Navpoint).

2. If a player unit is within the detection range circle of a zombie before the
zombie started to move towards a destructible wall, the zombie will “focus” the
player unit and not move at all. This is true for all three different zombie unit
types (AStar, MoveDirect, and Navpoint).

Keeping these bugs in mind it was necessary to use a scene without buildings, since
the mentioned bugs often occurred. It was decided to use a scene with player units,
zombies units, and resources. The scene is called SceneToBalance and is used for all
simulation purposes, i.e. it is used for the optimization with evolutionary algorithms
and for the two parameters algorithm.

The player has three player units available in the SceneToBalance with the ul-
timate goal to kill all eight zombies on the map, while not running out of food to keep
playing. Additionally, there are four resource spots on the map which are guarded
by varying groups of zombies. The first resource spot is guarded by three zombies,
the second by two, the third by one, and the last one is not guarded at all. The
resources can be gathered in order to extend the playtime, i.e. increasing the food
amount available to the player.

6.2.2 Goals

In its original state, the ZVG Prototype did not consist any objectives for the player.
We implemented several ideas to use in the Balancing Environment. These goals are
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realized in C#-Classes that can be appended to a scene to ModifyGameParameter.cs
in order to create winning and failing conditions.

Abstract goal In order to handle the goal creation process, the abstract superclass
Goal.cs has been created. It consists all essential functions required as displayed
below:

Listing 2: abstract goal variables.

1 public abstract class Goal : MonoBehaviour {

2

3 public static Goal instance;

4

5 public abstract bool IsAchieved (); // victory condition

6 public abstract bool IsFailed (); // loss condition

7 public abstract void Restart (); // reinitializes the goal

8 public abstract double [] GetFitness (); // fitness calculation

9

10 // display functions for the GUI

11 public abstract string GetAchievedMessage ();

12 public abstract string GetFailedMessage ();

13 public abstract string GetObjectiveMessage (); }

Individual goals The following individual goals for the game were created:

1. Survive for a given amount of time (TimeGoal.cs)

2. Kill a given amount of zombies (DeadZombiesGoal.cs)

3. Reach a given amount of Score Points (ScoreGoal.cs)

4. Gather a given amount of Resources (JunkGoal.cs)

5. Gather food to survive while combating the zombies (SurvivalGoal.cs)

Winning and failing conditions and results are shown to the player through interface
panels with flexible display messages. Furthermore, the fitness has to be returned
for further calculations (example below).

Listing 3: goal fitness calculation for overall average player health.

1 public override double [] GetFitness () {

2 int totalHealth = 0;
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3

4 // create a list of player units with enough health

5 List <ClientGridObject > playerUnits = Scopes.

AliveActivePlayerUnitsWithEnoughHealth (0f);

6

7 // iterate over the list , summing up the health

8 foreach (ClientGridObject playerUnit in playerUnits) {

9 totalHealth += playerUnit.GetGridObjectDefinition ().

health ;}

10

11 return new double [1] { Mathf.Abs(( float)health -

totalHealth) }; }

The states Restart, IsAchieved and IsFailed are later used by the Balancing Environ-
ment. New goals can be created by overriding the superclass functions with selected
conditions to extend the game (short code example from the SurvivalGoal below):

Listing 4: override victory and failure conditions.

1 // victory condition (all zombies are dead & initial food)

2 public override bool IsAchieved () {

3 return Fitness.GetJunkAmount () > 0 && Scopes.

AliveActiveZombieUnits ().Count == 0;}

4

5 // failure condition (player units dead OR food is empty)

6 public override bool IsFailed () {

7 return Scopes.AliveActivePlayerUnitsWithEnoughHealth (

healthLimit).Count < numAlivePlayerUnits && Scopes.

PlayerUnitsInResidence ().Count == 0 || Fitness.

GetGameJunkAmount () == 0f;}

Our main goal in the balancing process is the SurvivalGoal. This goal has the
objective to survive a level by gathering food (food is decreasing over time) and
fighting zombies, thereby incorporates two strategic elements implemented, namely
resource collection and fighting. Both aspects are measured by whether at least
one or more player has survived as well as whether enough food is left to proceed
with the game. With expiration of food before all Zombies are killed, the game is
lost. On the other hand, there is no strategic advantage in collecting food, when
there is still enough already collected food that allow to fight the Zombies. Those
strategic aspects will be covered in more detail in the chapter about the player AI,
but it shall be noted here to explain the setup of the Survival Goal. Hence, the
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SurvivalGoal extends the original fitness function (overall health distance to 50) with
the additional target parameter food (food distance to e.g. 5). To distinguish on the
impact of the different variables, weights for both parameters are introduced, with
food having a higher multiplicator (which displays the scarcity thereof).

Figure 7: Survival Goal standard setup.

The figure above shows the standard setup of the SurvivalGoal. The ’Health Limit’
describes the lower threshold of a player unit that at least needs to be survived to win
the game. The ’Number of Alive Player Units’ marks the minimum number of player
units that need to survive to win the game. In the SceneToBalance, one usually
begins with three player units. The ’Target Amount of Health’ is the target health
value for the optimization algorithm. The ’Health Weight’ is the weight with which
the fitness function measures this value. The ’Target Amount of Food’ is the target
food value for the optimization algorithm. The ’Food Weight’ is the weight with
which the fitness function measures this value. The ’Starting Food’ is the amount of
food at the beginning of a playtime. The values of figure 7 are the standard values
applied during simulating (see chapter 8).
Furthermore, the SurvivalGoal.cs class offers three different variants (fitness-

variant parameter) for the array output:

1. health result, food result, weighted result (default)

2. food result, health result, weighted result

3. weighted result, health result, food result
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6.2.3 Interface Structure

The original ZVG interface has been extended by new graphic panels to display
objectives and (as soon as the condition is reached) victory or failure screens.
Furthermore, relevant information are shown in the top bar called ResourceInfoPanel
(containing Player Units alive, Zombies alive, Food left and Time elapsed).

Graphic Panels The Objective and Result Panels both utilize an overlay to darken
out the current scene. Also, flexible text and image fields are grouped in a dialog
panel which allows direct manipulation through the goals. The panels are attached
to the IngameMenuCanvas which contains all GUI elements. While the Objective
Panel only has a Continue option, the Result Panel also offers a Restart and an Exit
function.

Figure 8: Graphic Panels Structure.

Counters Relevant game information is attached to the already existing Resource-
InfoPanel by utilizing the Counters script. If needed, additional information can be
added by creating a new text label and including the function in the script (example
below) - values have to be initialized and continuously updated.

Listing 5: counters script example for junk data.

1 public class Counters : MonoBehaviour {

2 Text junkText;

3 // initialization - search for the GameObject and assign

4 void Start () {
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5 GameObject resourceJunkChildGameObject = ClientMisc.

GetChildGameObject(this.gameObject , "Text_Junk");

6 if (resourceJunkChildGameObject != null)

7 {

8 junkText = resourceJunkChildGameObject.GetComponent <Text

>() ;}}

9

10 // update - get relevant information and update textfield

11 void Update () {

12 if (ClientGameLogic.instance.resourceData != null &&

junkText !=null) {

13 junkText.text = "Food: " + Fitness.

GetGameJunkAmount ();}}}

6.3 AI Development

6.3.1 Development Techniques

One of the main inputs for the BE is AI that includes both NPC AI and player
AI. The difference between the last two is that NPC AI is the conventional type
of AI for games that almost every game possesses. In contrast, player AI is the
specific AI that is able to play the game instead of a human player. While human
testing is also possible for the proper work of BE, this type of producing simula-
tions is not automated. The goal of this PS is to create an automated balancing
tool, so there is a need to develop a player AI in order to balance a game automatically.

For the development of the player AI for the ZVG and the 2DR games various
techniques were used, including behavior trees, A* search algorithm, and influence
maps. Behavior trees have become a popular tool for creating AI characters after
the release of Halo 2 [MF09]. Behavior trees have a lot in common with Hierarchical
State Machines but, instead of a state, the main building block of a behavior tree is
a task. There are different types of tasks; for illustration, looking up the value of a
variable in the game state, or executing an animation. Moreover, tasks are composed
into sub-trees to represent more complex actions. In turn, these complex actions can
again be composed into higher level behaviors, and that gives behavior trees their
power. Since all tasks have a common interface and are largely self-contained, they
can be easily built up into hierarchies without having to worry about the details of
how each sub-task in the hierarchy is implemented.
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The behavior trees for the ZVG and the 2DR include following types of tasks:

1. Leaf tasks are a type of the most basic task in behavior tree:

a)

Figure 9: Behavior tree element: condition.

Condition. It tests some property of the game and returns the success
status code if the Condition is met or returns failure otherwise.

b)

Figure 10: Behavior tree element: action.

Action. It alters the state of the game and most of the time it will succeed.

2. Composite tasks are a type of task that keeps track of a collection of child
tasks (leaf tasks or other composite tasks), and their behavior is based on the
behavior of their children:

a)

Figure 11: Behavior tree element: selector.

A Selector. It will return immediately with a success status code when
one of its children runs successfully. As long as its children are failing, it
will keep on trying. If it runs out of children completely, it will return a
failure status code.

b)

Figure 12: Behavior tree element: sequence.
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A Sequence. It will return immediately with a failure status code when
one of its children fails. As long as its children are succeeding, it will keep
going. If it runs out of children, it will return in success.

c)

Figure 13: Behavior tree element: parallel.

A Parallel. It has a set of child tasks, and it runs them until one of them
fails. At that point, the Parallel task as a whole fails. If all of the child
tasks complete successfully, the Parallel task returns with success.

3. Decorator tasks are a type of task that has one single child task and modifies
its behavior in some way:

a)

Figure 14: Behavior tree element: until fail.

Until fail. It keeps running child task until it fails.

On the other hand, the A* algorithm is usually used for pathfinding [MF09]. Given
a graph (a directed non-negative weighted graph) and two nodes in that graph (start
and goal), there is a task to generate a path such that the total path cost of that
path is minimal among all possible paths from start to goal. Any minimal cost path
will do, and the path should consist of a list of connections from the start node to the
goal node. Rather than always considering the open node with the lowest cost-so-far
value, the algorithm chooses the node that is most likely to lead to the shortest
overall path. The notion of “most likely” is controlled by a heuristic. If the heuristic
is accurate, then the algorithm will be efficient. Furthermore, the calculation of
heuristic for the A* algorithm incorporates the concept of an influence map. This
concept keeps track of the current balance of enemy or resource influence at each
location in the level. The A* heuristic considers the current balance calculated by
an influence map while choosing the node. The practical implementation of behavior
trees, the A* algorithm, and the influence map for the ZVG and the 2DR is described
in the following sections.
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6.3.2 Zombie Village Game Player AI

The ZVG includes both NPC AI and player AI, but while NPC or zombie AI was
already implemented in the initial prototype that was provided by Blue Byte GmbH,
player AI was not included in that prototype. Thus, the main task of the development
of the AI for the ZVG was to develop player a AI as one of the parts of the final BE.

Since the main balancing scene in the ZVG includes two game objects (zombies and
food) that the player can interact with, the player AI should be able to interact with
these objects in the same way as human player would. For most of the time the
player AI should fight with zombies, but when it runs out of health or food it should
move to the safe spot or the resource spot accordingly.

The conceptual development of player AI was performed by using behavior trees,
and the resulting behavior tree is presented in the following figure.

Figure 15: Behavior tree for the ZVG.

1. This tree starts with the parallel task that checks if there is a player unit
available. If it is not available, then there are no player units on the map and
AI does not perform any further actions.

2. If there is a player unit on the map that is available, then the AI starts to
perform actions with this player unit. The next task is the selector that starts
with the first sequence task. This task checks two conditions: are there any
resource spots (i.e. food) on the map and has the player AI reached the food
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limit. If the conditions are met, then the player AI should place a player unit
near the resource spot in order to collect food.

3. Nevertheless, if the conditions of the first sequence task have not been met,
then the selector task chooses the second sequence task that checks the amount
of health of player units. If the amount of health of a player unit has fallen
below the health limit threshold, then the player AI should place that player
unit in the safe spot.

4. If the last condition has not been met, then the selector task chooses the last
sequence task that finally checks for the zombies on the map. As the result, if
there are any zombies on the map, then the player AI places a player unit near
zombie in order to start the fighting. However, if there are no zombies on the
map, then the player AI does not perform any actions with a player unit.

The practical implementation of the described concept required the development of
four C# classes: PlayerBehaviour.cs, AggresiveAndResourcePlayerBehaviour.cs,
Scopes.cs and Predicates.cs. First two of the listed classes can be found in the
GameInterface – Behaviors folder, while the second two can be found in GameInterface
– Utils folder. PlayerBehaviour.cs and AggresiveAndResourcePlayerBehaviour.cs
directly implement the concept described by the behavior tree and should be described
in more detail. In contrast, Scopes.cs and Predicates.cs are supportive classes
that primary consist of return methods for AggresiveAndResourcePlayerBehaviour.cs,
so they are excluded from the detailed analysis.
The first class, called PlayerBehaviour.cs, inherits from MonoBehaviour.cs and
contains player AI parameters as well as methods to move player unit to certain
object. The parameters of the player AI include:

1. Bool variable active that specifies if player AI is activated or not

2. Integer variable decisionDelay that specifies how often the player AI should
make a decision

3. Float variable differentDistance that specifies the distance of the placement
of player units from the safe spot

4. Protected integer nextDecisionTime that is used for the calculation of time
for the next decision
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5. Protected bool canPlay that specifies when the player AI is able to make the
next decision

Listing 6: public and protected variables of PlayerBehaviour.cs.

1 public abstract class PlayerBehaviour : MonoBehaviour

2 {

3 [Header (("AI active"))]

4 [Header (("############ UNCHECK FOR MANUAL PLAY ############")

)]

5 public bool active = true;

6

7 [Header (("AI decision delay interval"))]

8 [RangeAttribute (1, 10)]

9 public int decisionDelay = 2;

10

11 [Header (("Indifferent distance"))]

12 [RangeAttribute (5.0f, 15.0f)]

13 public float indifferentDistance = 10.0f;

14

15 public static PlayerBehaviour instance;

16

17 protected int nextDecisionTime = 0;

18 protected bool canPlay = false;

The calculation of time for the next possible decision is performed by using decisionDelay,
nextDecisionTime and canPlay variables in the methods UpdateCanPlay(int

logicTicksSinceStart), SetNextDecisionTime(int nextDecisionTime) and CanPlay():

Listing 7: The calculation of time for the next possible decision in PlayerBe-
haviour.cs.

1 public void UpdateCanPlay(int _logicTicksSinceStart)

2 {

3 if (_logicTicksSinceStart >= nextDecisionTime)

4 {

5 nextDecisionTime += decisionDelay;

6 canPlay = true;

7 }

8 }

9

10 public void SetNextDecisionTime(int nextDecisionTime)

11 {

12 this.nextDecisionTime = nextDecisionTime;
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13 canPlay = false;

14 }

15

16 public bool CanPlay ()

17 {

18 return canPlay & active;

19 }

The placement of player unit is performed by the methods MovePlayerUnitTo

(ClientGridObject playerUnit, int _x, int _z), MovePlayerUnitToSafePlace
(ClientGridObject playerUnit, int _x, int _z) and MovePlayerUnitToObject(ClientGridObject
playerUnit, ClientGridObject zombieOrResourceUnit). The difference between
MovePlayerUnitToObject and MovePlayerUnitToSafePlace is that the first one
uses game objects such as zombie or resource spot as an input for the placement,
while the second one uses coordinates for the placement. Both of the methods call
MovePlayerUnitTo in order to perform actual placement, and this method performs
placement by calling PlaceNewObjectsOnMap method:

Listing 8: The calculation of placement in PlayerBehaviour.cs.

1 protected void MovePlayerUnitTo(ClientGridObject playerUnit ,

int _x, int _z)

2 {

3 PosIntXZ newPosition = Utils.GetFreePositionAroundPoint(

_x , _z);

4

5 // UpdateGridObjectsOnMap.MoveGridObjectToResidence (

playerUnit);

6 PlaceNewObjectsOnMap.instance.StartPlaceGridObject(

playerUnit , _x, _z);

7 PlaceNewObjectsOnMap.instance.PlacementRequesterOkPressed

();

8 }

9

10 protected void MovePlayerUnitToSafePlace(ClientGridObject

playerUnit , int _x, int _z)

11 {

12 MovePlayerUnitTo(playerUnit , _x, _z);

13 }

14

15 protected void MovePlayerUnitToObject(ClientGridObject

playerUnit , ClientGridObject zombieOrResourceUnit)
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16 {

17 GameBlockingMap gameBlockingMap = ClientGameLogic.

instance.GetBlockingMap ();

18

19 PosIntXZ placementPosition = gameBlockingMap.

FindAttackPoint(playerUnit , zombieOrResourceUnit);

20

21 MovePlayerUnitTo(playerUnit , placementPosition.x,

placementPosition.z);

22 }

The second class, called AggresiveAndResourcePlayerBehaviour.cs, inherits from
PlayerBehaviour.cs and contains player AI parameters as well as methods to
perform actions according to the behavior tree. The parameters of player AI include:

1. Integer variables safeX and safeZ that specifies the position of the safe spot

2. Float variable healthLimit that specifies the threshold of health when a player
unit should be moved to the safe spot

3. Float variable junkLimit that specifies the threshold of food when a player
unit should be moved to the resource spot

Listing 9: public variables of AggresiveAndResourcePlayerBehaviour.cs.

1 public class AggresiveAndResourcePlayerBehaviour :

PlayerBehaviour

2 {

3 [Header (("Safe coordinate X"))]

4 [RangeAttribute (-1000, 1000)]

5 public int safeX = 100;

6

7 [Header (("Safe coordinate Z"))]

8 [RangeAttribute (-1000, 1000)]

9 public int safeZ = -110;

10

11 [Header (("AI Bot health limit"))]

12 [RangeAttribute (0.0f, 1.0f)]

13 public float healthLimit = 0.05f;

14

15 [Header (("AI Bot junk limit"))]

16 [RangeAttribute (0, 100)]

17 public float junkLimit = 10;
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The main calculations are performed in the Play() method. It starts with the
declaration of the instances of the methods from the Scopes.cs. Basically they are
used to find a player unit, resource spot, or zombie according to certain conditions:

Listing 10: Declaration of methods from Scopes.cs in AggresiveAndResourcePlayer-
Behaviour.cs.

1 public override void Play()

2 {

3 ClientGridObject attackingPlayerUnit = Scopes.

FirstAliveActivePlayerUnit ();

4 ClientGridObject notAttackingPlayerUnit = Scopes.

FirstAliveActivePlayerUnitNotInCombat ();

5 ClientGridObject notAttackingWithHealtPlayerUnit = Scopes

.

FirstAliveActivePlayerUnitWithEnoughHealthNotInCombat

(healthLimit);

6 ClientGridObject gatheringPlayerUnit;

7 List <ClientGridObject > notEmptyResourceSpots = Scopes.

NotEmptyResourceSpots ();

8

9 ClientGridObject notSafePlayerUnit = Scopes.

FirstAliveActivePlayerUnitWithNotEnoughHealth

InCombatNotInSafePlace(healthLimit , safeX , safeZ ,

base.indifferentDistance);

10 ClientGridObject attackingZombieUnit = Scopes.

FirstAliveActiveZombieUnitInCombat ();

11 ClientGridObject notAttackingZombieUnit = Scopes.

FirstAliveActiveZombieUnitNotInCombat ();

Then this method incorporates the logic from the behavior tree and performs the
actions according to the first sequence task: The first action is to check if are there
any resource spots on the map and if the player has reached the food limit. If the
conditions are true, it picks up a player unit and puts it near resource spot:

Listing 11: First action (try to collect some food) in AggresiveAndResourcePlayer-
Behaviour.cs.

1 // Action 1. If not enough food - collect resources

2 if (Fitness.GetGameJunkAmount () <= junkLimit &&

notEmptyResourceSpots.Count != 0)

3 {

4 // Choose gathering player unit: one that is not in

combat with enough health , just not in combat or
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even unit in combat

5 if (notAttackingWithHealtPlayerUnit != null)

6 {

7 gatheringPlayerUnit =

notAttackingWithHealtPlayerUnit;

8 }

9 else if (notAttackingPlayerUnit != null)

10 {

11 gatheringPlayerUnit = notAttackingPlayerUnit;

12 }

13 else {

14 gatheringPlayerUnit = attackingPlayerUnit;

15 }

16

17 ClientGridObject notNearZombieResourceSpot = Scopes.

FirstNotOccupiedResourceSpotNotNearZombie(

gatheringPlayerUnit.gridObjectDefinition);

18 ClientGridObject bestResourceSpot = Scopes.

BestResourceSpot(gatheringPlayerUnit.

gridObjectDefinition);

19 // Action 1.1. Move player unit to resource spot

without zombies

20 if (notNearZombieResourceSpot != null)

21 {

22 MovePlayerUnitToObject(gatheringPlayerUnit ,

notNearZombieResourceSpot);

23 }

24 // Action 1.2. Move player unit to resource spot with

zombies

25 else if (bestResourceSpot != null)

26 {

27 MovePlayerUnitToObject(gatheringPlayerUnit ,

bestResourceSpot);

28 }

29 }

If the conditions are false, then this method checks if a player unit has reached the
health limit. If yes, it moves player unit to the safe spot:

Listing 12: Second action (try to move player unit to the safe spot) in Aggresive-
AndResourcePlayerBehaviour.cs.

1 // Action 2. If enough food but not enough health - go to safe

place
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2 else if (notSafePlayerUnit != null)

3 {

4 MovePlayerUnitToSafePlace(notSafePlayerUnit , safeX ,

safeZ);

5 }

If a player unit has not reached the health limit yet, then this method tries to place
the player unit near zombie in order to start the fighting:

Listing 13: Third action (try to fight zombies) in AggresiveAndResourcePlayerBe-
haviour.cs.

1 // Action 3. If enough food and enough health - fight zombies

2 else {

3 // Action 3.1. Attack attacking zombie

4 if (notAttackingWithHealtPlayerUnit != null &&

attackingZombieUnit != null)

5 {

6 MovePlayerUnitToObject(

notAttackingWithHealtPlayerUnit ,

attackingZombieUnit);

7 }

8 // Action 3.2. Attack not attacking zombie

9 else if (notAttackingWithHealtPlayerUnit != null &&

notAttackingZombieUnit != null)

10 {

11 MovePlayerUnitToObject(

notAttackingWithHealtPlayerUnit ,

notAttackingZombieUnit);

12 }

13 }

14

15 base.canPlay = false;

6.3.3 2D Roguelike Player AI

The 2DR includes both NPC AI and player AI, but as well as in the ZVG NPC or zom-
bie AI was already implemented in the initial game from the Unity Tutorial website,
the player AI was not included in that game. However, the standard zombie AI was
too simple and also produced some bugs. Thus, the main task of the development of
AI for the 2DR was to develop a player AI and a zombie AI as the parts of the final BE.
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Since the 2DR includes three game objects (zombies, food, and walls) that the
player can interact with, the player AI should be able to interact with these objects
in the same way as human player would. For most of the time the player AI should
avoid zombies and at the same time try to collect as much food as possible, but with
every step the player loses one point of food, and when he tries to destroy a wall he
loses 4 points of food in total, so this game involves resource management.

The conceptual development of the player AI was performed by using A* algo-
rithm and an influence map, while for the development of the zombie AI a behavior
tree was used. At the first stage of the development of the player AI the concept
of influence maps was applied. Every object on a map influences it with a certain
power, and such a power is given by a possible change of food produced by a certain
game object. For example, one move takes one food, any enemy can steal 10 or 20
food if player is nearby, any food game object can bring 10 or 20 food. Influences
interfere with each other. Example of such a map is shown below.

Figure 16: Influence map for the 2DR.

Consequently, A* algorithm uses influence map as a graph to traverse. Every edge
to a point on map corresponds to an influence of that point. Heuristic function is
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Manhattan distance to the exit, i.e. H1=|xe-xp |+|ye-yp | where (xe, ye ) and (xp,
yp ) coordinates of the exit and a point on map respectively. This algorithm gives
significant improvement in terms of average number of survived days. The main
issue with that algorithm is that if food game objects are not on shortest path player
unit does not pick them up. An xxample of A* Controller is shown below.

Figure 17: A* pathfinding for the 2DR.

As the result of another project for the “Modern Game AI Approaches” class, there
are other player AI algorithms including different types of A* Controller, Random
Controller, Euclidian Distance controller, Manhattan Distance Controller, Decision
Tree Controller and Monte Carlo Tree Search Controller, but for the evaluation of
BE performance for 2DR only A* controller was used. For that reason all other
controllers are excluded from the detailed description.

On the other hand, the development of the zombie AI incorporated the concept of
behavior trees. The reasons for changing the standard zombie AI that was imple-
mented in the game are: It produced unstable results when the interaction with A*
happened, and sometimes zombies blocked the exit and it was not possible for the
player to proceed to another level. The standard zombie AI was changed to behavior
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tree described below:

Figure 18: Behavior tree for the 2DR.

1. This tree starts with the parallel task that checks if there is a zombie unit
available. If it is not available, then there are no zombie units on the map and
AI does not perform any further actions.

2. If there is a zombie unit on the map that is available, then the AI starts to
perform actions with this zombie unit. The next task is the selector that starts
with the first sequence task. This task checks is this zombie unit in ambush. A
zombie unit is in ambush when it stays near exit and there are other zombies
on the map that are closer to the player. If the zombie is in ambush, it does not
move until the player will be near the exit and the zombie can start fighting.

3. Nevertheless, if the conditions of the first sequence task have not been met,
then the selector task chooses the second sequence task that checks if the type
of this zombie is a runner zombie. The choice of the zombie type depends on
the sprite model of the zombie, and since there are two types of sprites for the
zombies in 2DR, there are two types of zombies and runner is the first type. If
the zombie is considered to be a runner zombie, then it tries to move towards
player avoiding any obstacle on its way.

4. If the last condition has not been met, then the selector task chooses the
last sequence task that finally checks if the type of this zombie is a digger
zombie. In contrast to runner zombie, digger zombie tries to move towards
player destroying walls on its way.

59



The practical implementation of the described concept required the development of
two C# classes: AStarController.cs and EnemyController.cs. Both of the listed
classes can be found in the Completed – Scripts - Controllers folder. AStarController.cs
implements the concept of the A* algorithm, while EnemyController.cs implements
the concept of the behavior tree for the zombie AI.

6.4 Optimization Algorithm

6.4.1 Concept

The BE incorporates CI techniques. At this point, it is important to distinguish
between CI and AI within the context of this PS, because “there is no agreement
on the exact meaning of the terms Artificial Intelligence (AI) and Computational
Intelligence (CI).”[YT14] In context of this PS and in line with chapter 3.5, AI
refers to the either the NPC behavior or simulated player behavior (player AI). On
the other hand CI refers to the methodology applied to optimize game content. In
this sense, the BE incorporates CI techniques where the goal of automated game
balancing can be reformulated as an optimization task in which the optimization
problem is to find the best set of parameters that offers a balanced game experience,
which is measured by a fitness function. More specifically this optimization problem
is of discrete combinatorial nature defined by the configuration possibilities of the
types of game parameters and their discrete value ranges. Depending on the value
ranges and the number of game parameter types, the concurrent search space can
be calculated by multiplying all of the absolute values of the ranges. The following
table contains the applied standard set of game parameters, which translates into a
search space of 220,000 possible configurations.

Game parameter Value range

Time to consume ∈ [1, 5]
Player unit attack power ∈ [1, 20]
Player unit attack distance ∈ [1, 20]
Enemy unit health ∈ [90, 100]
Enemy unit attack power ∈ [1, 10]

Table 11: Standard set of Game Parameter.
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In order to find a good configuration in a search space where the problem size leads
to a super-polynomial running-time of an exact method, it is canonical conception
in research to apply non-deterministic algorithms that deliver robust results within
reasonable i.e. polynomial time [ES08]. According to [Tal09], metaheuristics fall into
the category of approximate algorithms and break down into the two sub-categories,
namely single-solution based and population-based methods (see figure 19).

Figure 19: Optimization methods [Tal09] .

Both methods represent a special heuristic or in other words certain strategy to
search the problem space efficiently. If applied correctly, these methods are known
to generate high-quality solutions, however "there is no guarantee of finding a global
optimal solution." [Tal09]

The outlined search space of table 11 with 220,000 possible solutions translates
into a run-time of approximately 70 days. In the case of this PS, this is mainly due to
the necessity of simulating every single solution in real game-time speed, where one
solution is equal to an assessed average playtime of half a minute. If this necessity had
been obsolete, the simulation time could have been reduced immensely. Therefore,
a search space of 220,000 configurations may have theoretically been solved by an
exact method. However, in order to offer a scaleable approach and circumvent the
given restriction of simulating in real game-time speed, the use of population-based
metaheuristics provides an appropriate methodology to continuously deliver high-
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quality solutions even when the amount of parameters and their value ranges will be
increased. Among the different variants of population-based metaheuristics exist EC,
which has established its applicability to discrete optimization problems. For this
reason, the optimization algorithms that have been applied within the BE are built
on the principles of EA problem solvers.

The general workings of an EA is inspired by the idea of mimicking Darwin’s
theory of ’survival of the fittest’, a natural selection mechanism that favors those
individuals within the population that are adapted best to given environmental
conditions [ES08]. Based on this nature-intrinsic principle the underlying concept
behind all variants of EAs is similar; given a population, i.e. a multiset of individu-
als (candidate solutions) and some form of environmental pressure (problem), it is
expected to see an iterative evolution (development towards solving the problem)
in the fitness (value expressed by an objective function). Generally, the process
of recombination and mutation (variation operators) creates diversity and novelty
(exploration) and the process of selection pushes towards quality (exploitation).
Together, selection and variation, form the basis of an EA. While the selection
operators only act on the population, the variation operators only act on each indi-
vidual. The general working of an EA can be seen in pseudocode and figure below.

Algorithm 2: Pseudocode of an evolutionary algorithm

Initialize population from random candidate solutions;
Evaluate each candidate;
while Termination criterion is not satisfied do

Select parents;
Recombine pairs of parents;
Mutate resulting offspring;
Evaluate new candidates;
Select survivors for the next generation;

end
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Figure 20: Working cycle of an evolutionary algorithm [Pre15].

By mimicking nature in a computational environment, a set of terminologies derived
from nature can be mapped to their corresponding meaning of algorithmic problem
solving (see table 12).

Any EA consists of a set of components. These components specify the methodology
and operation technique of the EA. They interrelate with each other and their
adjustment is influenced by the type of problem.

At first, it is required to define a representation. It is the encoding construct
of the individuals’ form that serves as modifiable data structure to apply the varia-
tion and selection operators as well as the fitness assessment. The scheme of this data
structure is often numerical or a binary string of fixed length. In this sense, vectors
can be Boolean, real-valued or integer. In the phenotypic approach, individuals are
represented internally exactly as they are represented externally. The phenotypic
approach has been applied in the case of the PS as it is in itself a useful representation
for optimization problems that involve evolving a combinatorial path or permutation
[ES08]. It is therefore of integer nature due to the discrete value ranges. Importantly,
a representation must be complete (entire search space), connected (search path
among solutions) and efficient (reduced time complexity), of which the first two
are guaranteed by the phenotypic approach. Working with the integer values also
satisfies the efficiency clause. The table 11 gives an overview of the standard setting
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Evolution Problem solving

Environment Problem space OR search space
Individual Candidate solution
Population Current set of candidate solutions limited

by a predefined size
Generation Number of any given population during

algorithm runtime
Parent Candidate solution that is part of the pop-

ulation
Child Changed copy of a parent
Fitness Quality
Fitness function Objective function OR utility function OR

cost function
Chromosome OR genome OR genotype data structure of the candidate solution
Gene OR locus A particular position in a chromosome
Allele Value of the gene
Selection Selection of candidate solutions based on

their quality
Mutation Probabilistic variation of a candidate solu-

tions
Recombination OR crossover Copying and swapping parents’ informa-

tion

Table 12: Evolutionary algorithm metaphor.

of the representation at hand.
Based on this representation the EA generates a random set of candidate solutions
serving as initial population. The recorded run-time 289 serves here as an exemplary
case with the following setups:

BE Component Setting

Game Zombie village game
Scene Scene to balance
Goal Survival goal
Player AI Aggressive and resource player behavior
Optimization algorithm Evolutionary algorithm with single-point crossover
Fitness function Weighted fitness function

Table 13: BE setup of run-time 289.
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AI Parameter Setting

AI active YES
AI decision delay interval 2
Indifferent distance 10
AI health limit 0.05
AI junk limit 10

Table 14: Standard setup of the Aggressive and resource player behavior (also for
run-time 289).

SG Parameter Setting

Health limit 0.05
Number of alive player unit 1
Target amount of health 50
Health weight 1
Target amount of food 5
Food weight 6
Starting food 20

Table 15: Standard setup of the Survival goal (also for run-time 289).

EA Component Setting

Population initialization Uniform random
Population size µ 10
Number of offspring λ 20
Simulation time limit (max generations) 21
Random number seed (positive integer) 361480
Parent selection operator Best two of µ
Crossover operator Single-point OR 1-point
Mutation operator Gaussian perturbation (σ = 1.95)
Survivor selection (µ + λ)

Table 16: Setup of evolutionary algorithm with single-point crossover for run-time 289.
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Individual Solution ID Gene values Fitness 1 Goal achieved

µi1 Sol1 (4,6,19,97,10) 116 False
µi2 Sol2 (5,7,20,90,2) 296 True
µi3 Sol3 (1,9,1,91,8) 82 False
µi4 Sol4 (1,19,13,93,8) 262 True
µi5 Sol5 (5,4,17,98,7) 112 False
µi6 Sol6 (3,14,19,91,5) 311 True
µi7 Sol7 (1,5,7,98,6) 58 False
µi8 Sol8 (5,10,20,99,9) 109 False
µi9 Sol9 (5,7,13,92,5) 53 True
µi10 Sol10 (3,18,10,97,1) 385 True

Table 17: Initial population data (generation 1) of run-time 289.

At this point in the simulation, an initial population of ten individuals has been
randomly generated from the set of permissible value ranges and their fitness values
have been computed. Each individual has a unique Solution ID defined by the birth-
time of the simulated playtime. The table 17 shows a high variance in the fitness,
due to the randomized initialization procedure. The fitness values are computed by
the objective fitness function g(x) = |Th −

∑
Pht=end

| + (6 ∗ |(Tf − Pft=end
)| where

|Th −
∑
Ph| expresses the absolute distance of the sum of all player units’ health

(
∑
Ph) remaining at the end of a simulated playtime (t = end) to the target health

value ((Th) see table 15) and where |(Tf − Pft=end
)| is the absolute distance of the

player’s remaining food (Pft=end
) to the target food value ((Tf) see table 15). The

expression |(Tf − Pft=end
)| is weighted times six in order to even it out with the

absolute values of |(Th −
∑
Pht=end

)| and assign both an equally important weight
when measured. The objective is to minimize the distances and consecutively the
overall result. The target values are set manually based on manual player experience
and serve as optimal values for a player experience that should neither be too hard
nor too easy and serves the balancing goals of table 8. It is however important to
also take into account whether a goal has been achieved or not. In the survival goal,
the game is lost either when all player units have died or all food has been consumed.
Since the BE is computing with absolute positive values only, it is possible to get a
very low result even when the game has been lost. In our initial population, (Sol7)
marks an example of this case.
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From the initial population (µ) the best two parents are selected for recombination.
In the case above, (i7) and (i9) are selected to produce twenty offspring (λ) as
depicted in the table below.

Individual Solution ID Gene values Fitness 1 Goal achieved

λi1 Sol11 (4,18,13,95,10) 230 True
λi2 Sol12 (3,10,12,91,8) 82 True
λi3 Sol13 (5,6,15,96,8) 112 False
λi4 Sol14 (2,15,15,90,1) 363 True
λi5 Sol15 (5,20,10,92,10) 316 True
λi6 Sol16 (1,8,14,93,4) 88 True
λi7 Sol17 (5,19,12,93,8) 334 True
λi8 Sol18 (1,10,12,92,6) 64 True
λi9 Sol19 (3,9,11,93,8) 74 True
λi10 Sol20 (1,20,14,91,1) 235 True
λi11 Sol21 (4,6,13,91,5) 111 False
λi12 Sol22 (3,20,12,90,7) 111 True
λi13 Sol23 (5,9,11,91,5) 139 True
λi14 Sol24 (1,20,11,92,5) 289 True
λi15 Sol25 (5,6,14,93,6) 100 False
λi16 Sol26 (4,16,12,94,6) 322 True
λi17 Sol27 (5,20,12,93,8) 334 True
λi18 Sol28 (1,28,1,4,16) 94 False
λi19 Sol29 (5,5,13,96,5) 87 False
λi20 Sol30 (1,20,14,90,6) 87 True

Table 18: Generated offspring from generation 1 during run-time 289 .

The given offspring (λi1,i20) have at this point also already been subject to the
mutation operator. Therefore, in the next step the algorithm will now select those
individuals for the next generation that have best fitness values from the pool of
(µ+ λ).
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Individual Solution ID Gene values Fitness 1 Goal achieved

µi1 Sol11 (4,18,13,95,10) 230 True
µi2 Sol30 (1,20,14,90,6) 87 True
µi3 Sol23 (5,9,11,91,5) 139 True
µi4 Sol4 (1,19,13,93,8) 262 True
µi5 Sol12 (3,10,12,91,8) 82 True
µi6 Sol24 (1,20,11,92,5) 289 True
µi7 Sol16 (1,8,14,93,4) 88 True
µi8 Sol18 (1,10,12,92,6) 64 True
µi9 Sol9 (5,7,13,92,5) 53 True
µi10 Sol19 (3,9,11,93,8) 74 True

Table 19: Population data (generation 2) of run-time 289 .

From the table above it becomes clear that due to the fact that (µ < λ) the selection
pressure is quite high and the majority of parents from the generation 1 has been
replaced with produced offspring. While generation 1 exhibited a mean fitness value
of 178, the mean fitness value of generation 2 has decreased to 156 while the condition
whether the goal has been achieved is now always True. Since the optimization
problem is a minimization problem, this is an improvement. This optimization
cycle continues until we have reached the termination criterion which is a maximum
number of generations of 21 in this case.
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Individual Solution ID Gene values Fitness 1 Goal achieved

µi1 Sol156 (5,7,12,93,5) 53 True
µi2 Sol60 (5,7,11,93,5) 53 True
µi3 Sol50 (5,7,12,92,5) 53 True
µi4 Sol210 (5,7,10,91,5) 53 True
µi5 Sol195 (5,7,15,98,5) 46 True
µi6 Sol378 (4,7,10,92,5) 41 True
µi7 Sol234 (4,7,10,95,5) 41 True
µi8 Sol273 (5,7,10,95,5) 53 True
µi9 Sol9 (5,7,13,92,5) 53 True
µi10 Sol179 (5,7,9,94,5) 53 True

Table 20: Population data (generation 21) of run-time 289 .

The final population demonstrates that almost every individual from the initial
population has been replaced with a better version. The mean value is 50, which
is a clear indicator that the algorithm provides convergence. However, a common
limitation of metaheuristics is that the optimization algorithm may get stuck at a
local optima. This may have been the case in run-time 289. As can be seen from the
figure below the last generations do not continue to further evolve significantly and
seem to be stalled at around a value of 50. From other run-times (e.g. run-time 294)
it can be learned that it is indeed possible to further converge towards a value near
or equal to 0. On the other hand, run-time 289 may still evolve even further if the
termination criterion had been set for a longer run-time.
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Figure 21: Development of the generations’ fitness of algorithm runtime 289.

On the other hand, solutions that seem to be a representation of local or even global
optima may be suitable enough candidates for providing a balanced player experience.
For this reason, a selection of optimal or near-optimal solutions have been manually
tested and assessed. The results are seen in the chapter manual balancing.

6.4.2 Evolutionary Algorithm Variants

Table 16 shows one specific variant of an EA. This specific variant has a strong bias
towards the best solutions given the parent selection strategy, which may have quite
exploitative impacts on the working of the algorithm. On the hand the standard
deviation of the Gaussian perturbation is set to high value, which may provide
enough exploration and counter balance the parent selection strategy and indeed
the ranges of the produced offspring show a high variance while the final population
demonstrates that a solution from the initial population can continue to exist if
it is good enough. Together this could be interpreted as an indicator for enough
exploitation and exploration. However, in order to substantiate this finding, several
other variants of EA were built for comparison (see table 21. In chapter 5.5, the F-
Race seeks out to find the best configuration in terms of validity, reliability and time

70



complexity. All of those variants have a uniform random population initialization
with (µ = n), where (n) is a variable that is set manually before run-time. Secondly,
the number offspring (λ) is set to be higher than the number of parents (µ) with
(λ = m), where (m) is a variable that is set manually before run-time with (m > n) .
Thirdly, the termination criterion is always set to a maximum number of generations
(g), where (g) is a variable that is set manually before run-time with (g = z, z

λ
≈ 400).

Finally, it is necessary to provide a random number seed which is a variable that is
set manually before run-time with positive integers.
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Component EA0 EA1 EA2

Parent
selection

Best two of µ Best two of µ

from random r,
r ⊂ n

Fitness-
proportional
with sigma
scaling

Crossover Uniform random Uniform random Uniform random

Mutation Gaussian
perturbation
(0.1 ≤ σ ≤ 4)

Gaussian
perturbation
(0.1 ≤ σ ≤ 4)

Gaussian
perturbation
(0.1 ≤ σ ≤ 4)

Survivor
selection

(µ + λ) (µ + λ) (µ + λ)

Component EA3 EA4 EA5

Parent selection Best two of µ Best two of µ Best two of µ

Crossover Single-point Uniform random Uniform random

Mutation Gaussian
perturbation
(0.1 ≤ σ ≤ 4)

Gaussian
perturbation
(0.1 ≤ σ ≤ 4)
with mutation
probability
(0.01 < pm ≤
0.3)

Gaussian
perturbation
(0.1 ≤ σ ≤ 4)

Survivor
selection

(µ + λ) (µ + λ) Fitness-
proportional
with sigma
scaling

Table 21: Different applied variants of the evolutionary algorithm.

General conception of designing the different variants is to only change the strategy
of one component at the time and keep the remaining components of the base variant
EA0 constant. This allows comparison of the different techniques and helps to
identify which of the strategies serves best compared to the base variant. Firstly, the
parent selection of EA1 is reduced in exploitation by randomly setting up a pool of
candidates for mating of which the best two are then selected, which is a tournament
selection where (r) defines the selection pressure [ES08]. The closer the value of
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(r) is to the value of (µ) the higher the selection pressure. A value of 4 provides
a reasonably small decrease in selection pressure that. The Fitness-Proportional
method in EA2 selects the parents based on the probability of their absolute values.
In this sense, very good solutions take over which may lead to premature convergence,
however, in comparison with the GENITOR method of the base variant, it offers a
higher exploration. The applied sigma scaling incorporates information about the
mean fitness and is the constant c is set to the standard value of 2 [ES08]. The
single-point crossover method in EA3 reduces exploration as it maintains most of the
parents’ information with the downside of a strong bias towards the first and last
gene of the chromosome. The mutation probability (pm) in EA4 is applied to further
control the standard deviation of the Gaussian perturbation towards a mutation
that in average changes on gene per chromosome [ES08]. The Fitness-Proportional
method in EA5 has the same impact as in EA3, only that it occurs during the
survivor selection.

6.4.3 Balancing Environment Instructions

In the following the steps to set up the balancing environment for a specific scene are
explained. These instructions serve as a guideline to apply the balancing environment
to the two used games during this project in Unity. Exemplary pictures for the
purpose of visualizing the instructions are taken from the ZVG. Even though, the
instructions are also valid for the 2DR game.

1. Chose and load the scene that is to balance.
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Figure 22: Choosing a scene to balance.

2. Make sure the chosen scene has the game object ModifyGameParameter to
attach your scripts to. All following scripts will be attached to this game
object.

Figure 23: Necessary game object ModifyGameParameter.

3. Next, add the ComplexGame.cs script to the game object ModifyGameParam-
eter.
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Figure 24: Adding ComplexGame.cs.

4. Attach the frame of the Balancing Environment through attaching BalancingSuite.cs
to ModifyGameParameter.

Figure 25: Attaching the Balancing Environment frame.

5. For logging future results give the sessions log file a name.
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Figure 26: Name for session log file.

6. Enable the Player AI through attaching the relevant script
(here: AggressiveAndResourcePlayerBehaviour.cs) to ModifyGamePa-
rameter and set the AI relevant parameters.

Figure 27: Player AI configuration.

7. Chose a goal for the current scene, attach the relevant goal script to Modi-
fyGameParameter (here: SurivalGoal.cs) and set the goal relevant parame-
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ters.

Figure 28: Goal configuration.

8. Choose an algorithm for parameter optimization by attaching one of the
algorithm scripts (here: EA.cs) and set the algorithm relevant parameters.
Give the population log file a name for future documentation of results.

Figure 29: Algorithm configuration.

The BE is now set up. The simulation can be started by pressing the Unity "Play"-
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Button. The above-shown example of setting up the BE shows the case of the ZVG.
The methodology is the same for the 2DR game.

6.4.4 Technical Implementation

From the technical perspective the BE is a set of C# scripts which are developed us-
ing principles of object-oriented programming. The scripts can be separated into two
levels: level of abstraction and level of realization. The level of abstraction includes
abstract classes which define the main structure and functionality of the BE. This level
can be reused as a first sketch of a technological standard for automated game balanc-
ing. Indeed, it includes all the required interfaces to perform the latter. Developers
can use the implemented code and properly extend functionality of provided abstract
classes in order to adapt BE for a specific game. The level of realizations shows how
this functionality can be extended on the examples of two games ZVG and 2DR. The
BE is developed in a modular way, so every component is minimally depended on
other components and can be seen as a separate unit. Development highly utilizes the
Singleton Pattern, allowing instantiation of only one object of a particular class. This
is mostly done due to Unity specificity, however this can be omitted in future versions.

The BE is mostly anchored around two main entities: Feature and Solution. The
feature-entity encapsulates information about one dimension of the search space;
for example, it can be player attack distance or player health in ZVG. This entity
includes the following fields:

1. name: Textual name of the feature.

2. value: Numerical value of the feature.

3. lowerBound, upperBound and isDiscrete: Values which define the configu-
ration of the search dimension, used further on by the algorithm in order to
satisfy optimization prerequisites.

The solution-entity represents one point in the search space with a fitness vector
attached. It includes the following fields:

1. id: Identifier of the solution.

2. features: Array of features which represents one point in the high dimensional
space.
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3. fitness: Vector of numerical fitness values which represent the "goodness" of
the point in terms of being balanced.

4. isGoalAchieved: Boolean value that indicates "true" whenever the player AI
has achieved the goal of the game during a simulation run.

Figure 30: Feature and Solution Entities.

Both entities include only private fields, since after instantiation they cannot be
modified, however the basic getters are defined for all the fields. Figure 30 shows
these entities, basic constructors are omitted for both entities, since they take all the
fields for instantiation.
An important component of the BE is an object that supports communication

between itself and a game. The BE checks different parameters of the game and thus
these parameters should be passed and accordingly set within the game. The game-
entity represents this object and defines required functionality for such communication.
It incorporates the following fields and methods:

1. instance: Instance of this class - it realizes Singleton Pattern.

2. awake: This function is used instead of a constructor to instantiate the object
and keep only one instance of the class.

3. getFeatures: Abstract method that returns current game features.

4. setFeatures: Abstract method that sets current game features for a simula-
tion.
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Figure 31: Game Entity.

Game developers should appropriately extend this class in order to adapt the BE for
a particular game. Accordingly, functionality of getting and setting game parameters
should be realized. Figure 31 depicts the Game entity.

The core of the optimization process is the entity Algorithm, it represents the
optimization algorithm used to find the optimal parameter combination for a game.
The abstract class Algorithm.cs includes the following fields and methods:

1. instance: Instance of this class, it realizes Singleton Pattern.

2. awake: This function is used instead of a constructor to instantiate the object
and keep only one instance of the class.

3. getCurrentFeatures: Method that returns the next features for a simulation.

4. setCurrentSolution: Method that delivers the simulated solution.

5. isTermial: Method that returns "true" whenever the algorithm reaches the
terminal state - for example, when an optimal solution is found.

6. getBestSolutions: Method that returns a set of best solutions which are
sorted appropriately.

It can be seen from figure 32 that the communication with the optimization al-
gorithm is messaging oriented. This approach makes the BE generic and avoids
putting the main emphasis on one entity, which makes the environment more modular.
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Figure 32: Algorithm Entity and Exemplary Extension Evolutionary Algorithm.

Figure 32 shows an exemplary extension of the algorithm class. It realizes the
logic of EAs. On the figure only public fields are shown to present the main logic
of the approach. This algorithm is used for optimization during automated game
balancing, therefore it should be outlined in more details. From the development
point of view most of the evolutionary algorithms are different only in strategies
that they use for generating initial population, parent selection, crossover, muta-
tion and selection. Therefore, technically all developed EAs are different only
in a way how these strategies are instantiated. For each strategy there is an
abstract class (InitialPopulationStrategy.cs, ParentSelectionStrategy.cs,
CrossoverStrategy.cs, MutationStrategy.cs and SelectionStrategy.cs) to
implement required functionality, which should be extended further. Thus, hav-
ing implemented different strategies, various EAs can be constructed just calling
the respective class constructors with required parameters. Listing 14 shows the
instantiation part of the strategies.

Listing 14: Technical realization of different Evoluationary Algorithms.

1 ...

2

3 private InitialPopulationStrategy initialPopulationStrategy;

4 private ParentSelectionStrategy parentSelectionStrategy;

5 private CrossoverStrategy crossoverStrategy;
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6 private MutationStrategy mutationStrategy;

7 private SelectionStrategy selectionStrategy;

8

9 ...

10

11 protected void Awake()

12 {

13 ...

14

15 // determines how initial population is generated

16 initialPopulationStrategy = new RandomPopulationStrategy ();

17

18 // determines how parents are selected

19 parentSelectionStrategy = new BestTwoSolutionsStrategy ();

20

21 // determines how new offsprings are generated

22 crossoverStrategy = new ProbabilityBiasedCrossoverStrategy

(0.5);

23

24 // determines how new offsprings are mutated

25 mutationStrategy = new GaussianMutationStrategy(sd);

26

27 // determines how new offsprings are combined with population

28 selectionStrategy = new ReplaceWorstSolutionsStrategy ();

29

30 ...

31 }

32

33 ...

During the development of the EAs in this PS various strategies were implemented.
Based on these strategies different algorithms were constructed, which are described
in chapter 6.4.2. However, considering all the combinations of strategies, a higher
number of algorithms can be simply developed and applied.

The central entity that brings together all the components: Goal, Game, Algo-
rithm, and AI, is the Balancing Suite. This entity controls the achievement of the
goal, reports to the algorithm game outcome, gets and sets new parameters and
restarts the simulation process. A representation of this entity can be seen in figure
33. Class BalancingSuite.cs includes the following fields and methods:

1. instance: Instance of this class, it realizes Singleton Pattern.
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2. sessionFileName: File name for the simulation log.

3. currentFeatures: Parameters that are simulating at the moment.

4. runID: Identifier of the simulation run.

5. logger: Logger object which creates logging files and writes logs.

6. awake: This function used instead of a constructor to instantiate object and
keep only one instance of the class;

7. eval: The main method that controls the balancing process. It gets and sets
parameters and repetitively restarts the simulation process.

8. stopSimulation: The method that closes all logger connections and stops the
balancing process.

Figure 33: BalancingSuite Entity.

So far the technical implementation of the BE is not exhaustive. Moreover, it is
generic and versatile. Developed and applied firstly for balancing ZVG game, it was
then translated and easily adapted for 2DR game - a first proof of the flexibility and
reuseability of the implementation. The developed approach can thus be enhanced
further towards a generic framework for automated game balancing.

6.5 The "Optimal Optimization"

Prior to any computational and human simulation effort, the selection of the best
algorithm to the problem should be approached. Even if the type of algorithm has
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already been selected, this most likely still has a certain set of parameters itself to
determine how it will proceed - like the mutation and crossover methods for example
in EAs. We call a specific setting of such parameters the algorithm configuration.

Figure 34: Sample Configurations for F-RACE.

The two graphs shown in figure 34 each display ten simulation runs with the same
algorithm configuration applied on the ZVG. What is the configuration that should
be preferred, keeping in mind that the minimum fitness value is best? In this case
configuration 13 on the right side obviously achieves smaller fitness values and im-
proves faster than configuration 1. One can conclude from this example, that it is
beneficial to invest time in “optimizing the optimization” in order to be more efficient
in the long run.

Depending on which algorithm parameters are chosen and the value ranges al-
lowed, many possible algorithm combinations exist. The algorithm parameters for
the F-RACE were generated randomly from the permissible set of value ranges given
in table 22. Firstly, the value ranges for the number of offsprings and the population
size were derived from literature in the way that in (µ+ λ) selection it is canonical
conception of Evolutionary Strategies to have an offspring surplus so that (λ > µ).
This induces a larger selection pressure [ES08]. This strategy is applied here in
the way that λ has ranges from 11 − 20, while µ has ranges from 4 − 10, where
the minimum is bound by the necessity of having at least 2 individuals to perform
the recombination operator. Secondly, the mutation rate is only applied to creep
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mutation of EA4 where each gene is independently being added a small positive
or negative value with a mutation probability (pm), which is usually set so that in
average between one gene per offspring is mutated. In the case of balancing the ZVG
an individual has a chromosome with 5 genes so that a value of 0.2 for pm should
bring one mutation in average [ES08]. Therefore, for the algorithm parameter search
it was chosen to set of range between 0.01− 0.3 . Thirdly, the standard deviation
determines the extent to which a given value is perturbed. This is set between 1 - 4
to match the integer search space of the representation.

Figure 35: F-RACE Overview.

The method applied to find a good algorithm to minimize the fitness in ZVG is an
adapted version of the F-RACE algorithm described in [BCP+10]. The algorithm,
as outlined in figure 35, receives an initial set of algorithm configurations from which
it determines the best one through the assignment of cost values and calculation of
statistical tests.

The adapted F-RACE was implemented in R. An R-package (race) exists and
was examined first, but owing to the unavailability of an interface between R and
Unity in the PS system landscape, it was necessary to implement the algorithm from
scratch. Supporting R-packages used for this are: gsheet (access the production
schedule in Google Drive), zoo (calculate the rolling mean in cost function 3), and
dplyr (additional operations like counting and substitution). Algorithm 3 describes
the logic of the implemented code in a simplified way. To be able to perform the
actions described in algorithm 3, the configuration files are first read into R using the
details provided in the production schedule spreadsheet. Using these details, each con-
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figuration run can be assigned to a step looking up its specific seed value. By checking
for how many seeds all simulations are available, the code derives the total step size k.
A significance level α has to be set prior to running the code which is relevant for the
outcome of the Friedman and Conover test. Ideally, α should be between 0.05 and 0.1.

Parameter Range Step size Type

Algorithm EA1 to EA5 1 character
Standard Deviation 1 to 4 1 integer
Mutation rate 0.01 to 0.3 0.01 decimal
Population size 4 to 10 1 integer
Number of offsprings 11 to 20 1 integer

Table 22: Algorithm configuration parameters for F-RACE.

Algorithm 3: Adapted F-RACE for algorithm selection
input : Configuration files, α
output : Configurations to be removed

k ← No. of steps available;
for i← 1 to Total Number of Configuration files do

Calculate cost value for current file;
end
for j ← 1 to k do

currentBlock ← cost values current step;
allBlocks← Union(allBlocks, currentBlock);
if j > 1 then

Calculate Friedman test value T ;
if T > 1− α quantile of χ2 then

Calculate Conover;
if Conover > t1−α/2 then

Add to configurations to be removed;
end

end
end

end
Return configurations to be removed;
Return best configuration;

Both, Friedman and Conover, are rank based tests, using the rank of configurations
in the currentBlock as well as the sum of the ranks over allBlocks. The algorithm
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can therefore use this information to return the best ranked configuration. At any
given point in time this results in the best configuration found and those removed so
far. Applying the Wilcoxon matched-pairs signed-rank test when only two configura-
tiosn are left as described in [BCP+10] will then deliver the overall best configuration.

Different cost functions have been implemented as the idea about cost definition
evolved. They can flexibly be interchanged. Specifically, these are:

• ID of third best: This cost function accounts for finding at least three good
solutions very fast. If at least three solutions below the cost limit are found,
the solution ID of the third best solution is assigned as a cost value. In case
the algorithm did not produce more than two good solutions, this is penalized
by assigning a cost value of 500.

• Fitness quantiles: This cost function rewards those configurations that find
good solutions fast and reliably and at the same time penalizes those that don’t
a bit more smoothly. It calculates the cost depending on the number of solutions
with a fitness value below the previously assigned cost limit. If at least three
solutions below the cost limit are found, the cost for the current configuration
is set to the 50% quantile of the fitness. To penalize those configurations where
not many good solutions are found, the cost value is set to the 75% quantile of
the fitness for these.

• AUC of top 3 so far: This cost function looks at how the mean of the best
three solutions found so far evolves during the simulation. It calculates the
area under the curve of the graph with the solution ID on the x-axis and the
mean fitness out of the best three solutions so far on the y-axis.

Table 23 lists the results achieved with the different cost functions after ten steps,
meaning ten ZVG simulation runs with the same configuration. The ID of third
best could not remove configurations using a cost limit of 10 or 20. The Fitness
quantiles function is very sensitive to the cost limit. For a low cost limit, it seemed
very effective, however looking at the remaining configurations, the results do not
seem reliable enough. For example, configruations 14 and 15 (see figure36) seem
very unpredictable. The cost function AUC of top 3 so far does not require any cost
limits and it does reliably remove those configurations first, that seem unsatisfactory
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also when looking at the visualization. Consequently, this cost function is most
recommendable.

Cost function Cost

Limit

To be removed Best so

far

ID of third best 20 NA NA
ID of third best 10 NA NA
Fitness quantiles 20 8 17
Fitness quantiles 10 1, 2, 3, 6, 7, 8, 11, 16, 17, 18, 20 12
AUC of top 3 so far NA 10, 14, 15 19

Table 23: Results of different cost functions for F-RACE.

Figure 36: Sample configurations expected to be removed by F-RACE.

To sum up this section, a statistical approach to find a good algorithm configuration
for the problem to be tackled is useful. However, this comes with high upfront effort
regarding simulation of the game and should rather be considered for problems of
higher complexity. The logic implemented in R for ZVG can be applied to other
games and problems. Nevertheless, a more enhanced level of automation for the
simulation should be envisioned.
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7 Balancing Showstoppers

7.1 Communication

The communication with Blue Byte GmbH proved to be very restricted and some-
times unreliable. The game developer responsible for the ZVG prototype did not
have time to update or work collaboratively on the prototype, leaving necessary
adjustments (e.g. implementation of a winning condition) to the project group. Due
to the fact that the developer had commitments of higher priority within Blue Byte
GmbH, he could only spend a very limited amount of time on support in resolving
the reported bugs and problems. The only way to contact the game developer was
via e-mail. However, the feedback often did not help to resolve major bugs that
prevented the BE from working reliably.

Initially, it was agreed to have the opportunity to call the game designer via Skype at
least once. However, this opportunity was often declined or delayed by the developer
due to the other commitments. When the Skype session had finally been arranged
it was restricted to text chat instead of a voice call. While this was unfortunate
it helped resolving the major bugs, which ultimately led to a reliable working BE,
in combination with the ZVG. In conclusion this kept the PS from progressing for
several weeks and reduced the time available for simulation and data analysis.

7.2 Bugs: Zombie Village Game

In the process of working with the prototype, several bugs hindered the progress of
the implementation. As part of the game logic was hidden due to property rights,
fixing the bugs was a tedious procedure and required direct communication with the
game creator. In the following is a list of the bugs faced by the team:

Logic Tick Mismatch - Status: fixed Occurring client/server asynchronisation
broke the game. This issue arose when there were no zombies in range of the player
or when the zombies could not be respawned, i.e. the predefined limit of zombies to
spawn was reached.

Out-of-Sync Bug - Status: fixed Sometimes the client and server ticks were
restarted equally, but often they got out-of-sync, e.g. "3 seconds on client side vs. 9
seconds on server side".
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Respawn Object Bug - Status: fixed Respawn objects were not restarted after
the first restart, i.e. they did not spawn zombie units.

Zombie Health Bug - Status: fixed Zombie units sometimes remain on the map
with a small amount of health points left but are no longer attackable by player
units.

Disappearing Interface Objects - Status: fixed With activated player AI, User
Interface elements disappear. As a result, the player AI has to be deactivated for
manual play mode. We included a checkbox in the interface to switch between
manual and automated interaction.

Pathing Through Wall Bug - Status: not fixed Due to attack preferences,
Zombies will try to reach player units beyond walls, unable to target the wall first
- thus, they are stuck in front of the wall. As a result, the scene we used did not
feature any walls or structures.

Simulation Speed Bug - Status: not fixed Increasing the game speed results in
behavior bugs and erroneous data due to client/server asynchronisation.

7.3 Bugs: 2D Roguelike

Zombie Blocking Goal Quadrant - Status: fixed In the original game a zombie
was able to move to the exit and block it, so that the player was not able to proceed
to the next level and would lose the game in the current level.
This was fixed by extension to the zombie unit AI. In any case the exit is only be
accessible for the player unit.

Player and Zombie stuck in one field - Status: not fixed Units can move to
the same field at the same time and after that do not continue to move. The player
can therefore not continue the game and will die on that position.
This enforces a simulation with a high decision delay for the player AI and a low
game speed or in case of manual balancing a slowly acting player.

Zombies stuck in one field - Status: not fixed Units can move to the same field
at the same time and after that do not continue to move. The zombies can therefore
not further chase the player, which lowers the difficulty of that level by accident.
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This enforces a simulation with a high decision delay for the player AI and a low
game speed or in case of manual balancing a slowly acting player.
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8 Manual Balancing

In the following section the manual balancing process, created results and gained
insights are described and explained.

8.1 Zombie Village Game

The ZVG was the first game used for manual balancing in the same setup as
for the automated approach. Manual balancing was conducted for the scene
SceneToBalance.unity.

8.1.1 Preliminaries

[Sch14] was read in order to get an idea of how a manual balancing process may look
like. Furthermore, insights gained during the Blue Byte presentation at the WWU
Münster were taken into account.

Gained useful information:

• Figure out the audience’s desire

• A lot of playtesting is necessary

• Adjust elements of the game until they deliver the preferred experience

• Understand relationships between elements of the game

• Understand which elements need to be balanced

• There are twelve common types of game balance (as described in [Sch14])

• Some game balancing methodologies are introduced

– Doubling and halving

– Train your intuition by guessing exactly

– Document your model

– Tune your model as you tune your game

– Plan to balance

– Let the players do it
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– The Lens of the Problem Statement

For the ZVG, the player should face a challenge (the type/goal of game balance).
It had to be determined which parameters are supposed to be balanced and which
ones are supposed to have a fixed value. Regarding balancing methodologies, a
combination of the ones known so far was used: doubling and halving as very useful
to find boundaries of values for parameters. Within those boundaries guessing played
a big role. Document as much as possible in order to keep track of the process and
progress, make adjustments wherever they are needed.

8.1.2 The Balancing Process

A number of assumptions were made before working on a preliminary manual
balancing process:

1. A specific scene featuring player units, zombie units, and resources is used

2. The player (NOT player units) loses resources over time; has to gather resources
to stay in the game

3. Certain parameters are fixed, e.g. player unit health (100), zombie unit health
(100), zombie unit attack distance (1), and starting amount of resources (20)

Keeping these assumptions in mind, a preliminary manual balancing process was
developed. In the following, all steps and their explanations are listed:

1. Create an Excel sheet showing all relevant parameters

a) Fixed: player unit amount, player unit health, zombie unit amount, zombie
unit health, zombie unit attack distance, resource spot amount, resource
spot junk amount, player junk at game start amount

b) Variable: player unit attack power, player unit attack distance, zombie
unit attack power, resource reduction time interval

2. Add default parameter values provided by Blue Byte GmbH to Excel sheet:
player unit attack power (9), player unit attack distance (5), zombie unit attack
power (3)

3. Add parameter value for resource reduction time interval: intuitively (2) was
chosen
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4. Play game using these parameters

5. Analyze logs created during play through:

a) Check if humans survived

i. If >0, player won

ii. If 0, player lost

b) Check if zombies survived

i. If >0, player lost

ii. If 0, player won

c) Check time played

d) check resources remaining

6. Repeat steps 4-5 until five solutions without major errors/bugs occurring are
generated

7. Adjust parameters based on observations

a) One parameter at a time

b) Use doubling/halving in order to find boundaries

8. Document parameter changes in Excel sheet

9. Repeat steps 3-6 until doubling/halving does not yield useful result anymore

10. Use "brute force" approach in order to find appropriate parameter values
between the previously identified boundaries

11. Repeat steps 4-6 and 8 and continue to use "brute force" approach

12. Successfully identify a "good solution"

8.1.3 Parameter Setting

In order to determine which parameters should be fixed and which parameters should
be variable (the game elements to be balanced/adjusted), a group discussion was
conducted. The discussion yielded the following classification:
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Fixed Variable

Player Unit Amount Player Unit Attack Power
Player Unit Health Player Unit Attack Distance
Zombie Unit Amount Zombie Unit Attack Power
Zombie Unit Health Resource

Reduc-
tion
Time
Interval

Zombie Unit Attack Distance
Resource Spot Amount
Resource Spot Junk Amount
Player Junk Amount at Game Start

Table 24: Overview of fixed and variable parameters for the ZVG.

8.1.4 Documentation of the Manual Balancing Process

For documentation and supporting the process an excel sheet was created with the
following columns:

• Date

• Run ID

• Player Unit Health

• Player Unit Attack Power

• Player Unit Attack Distance

• Zombie Unit Health

• Zombie Unit Attack Power

• Resource Reduction Time Interval

• Player Units Alive (after the current playtest ended either by winning or losing)

• Zombie Units Alive (see above)

• Resources Remaining (see above)

• Win (Boolean)

• Time Elapsed (after the current playtest ended either by winning or losing)

• Comment
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First Iteration: The player followed the preliminary balancing process and docu-
mented each playtest using the Excel sheet. The parameters were set to the default
values for the first two playtests in order to get a feeling for the game and get
used to the controls. Then, a single parameter got adjusted using the doubling
and halving method. After identifying boundaries, the player started guessing val-
ues for the parameter that is currently being adjusted within the identified boundaries.

This first iteration of manual balancing didn’t yield any useful results. The two main
reasons identified are:

1. Bugs that could not be resolved yet had a negative impact on the playtesting.
The communication between the server and the client did not work flawlessly,
which resulted in a number of playtest that couldn’t be interpreted in a
meaningful way

2. The amount of “Player Units Alive” can’t be interpreted in a meaningful way
even for playtests not ruined by bugs, since the amount of health left for each
player unit alive was not tracked. For example, all three player units being alive
after a playtest ended could mean that the game did not provide a challenge.
However, if all three units barely survived (average health remaining of 20) the
game did indeed provide a challenge.

Second Iteration: Before starting the second and final iteration of manual balanc-
ing, the bugs mentioned above had to be fixed. Furthermore, the columns featured
in the Excel sheet were adjusted. The column “Run ID” was renamed to “Solution”
in order not to confuse it with “Run ID” of the (automated) Balancing Environment,
where a run features multiple solutions. The most important adjustment was the
addition of the column “Sum Health Left”. After a playtest ended either by winning
or losing, the sum of the health left of all three player units (dead or alive) is displayed
and can now be documented in the Excel sheet. This allowed an interpretation
of how challenging the game actually is – similar to the Balancing Environment.
Lastly, in order to make it easier to distinguish playtests with and without issues like
minor bugs, a new column “Issue” which is filled with “YES” and “NO” depending on
whether the playtest was flawless or not, was added. Playtests where issues occurred
could not be interpreted properly and were disregarded. For the second and final
iteration of manual balancing, the preliminary balancing process explained earlier
was used, too. It has to be noted that for each parameter combination, solutions
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were created until a total of five solutions without any issues was reached. The scene
SceneToBalance.unity was used and the following playstyle was adapted by the
player:
A defensive playstyle where the layer focuses on the resource spots with zero to one
zombies next to it first, next going for the group of two zombies and the resource
spot next to them and finally, after gathering a resource buffer, attacking the last
group of zombie consisting of three zombie units.
A total of 142 solutions were created by the player over several days. In the end, a
satisfying solution was found (see table 25) :

PU ATK Power PU ATK Distance ZU ATK Power Reduction Time

6 4 8 2

Table 25: Good Solution Parameter Combination Manual Balancing ZVG.

This solution featured an average “Sum Health Left” of 57 over a span of 16 flawless
playtests (all featuring the parameter combination of the good solution). This was
interpreted as a fitness value of seven with regards to the Balancing Environment.
The solution provided a challenge for the player but at the same time allowed a
considerate player to win frequently. 13 out of the 16 flawless playtests resulted in a
win. Three out of the 16 flawless playtests resulted in a loss. Two out of the three
losses were a result of running out of resources (the player lost because of starvation).
One out of the three losses was a result of all the player units dying, leaving the
player unable to reach the goal of killing all zombies.

8.1.5 Playtesting solution identified by Balancing Environment

The player conducting the manual balancing was then provided with the following
three good solutions identified by the Balancing Environment (see table 26):

PU ATK Power PU ATK Distance ZU ATK Power Reduction Time

17 1 10 2
14 1 7 2
13 2 10 2

Table 26: Good Solution Parameter Combination Manual Balancing ZVG.
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The first two good solutions were challenging and enjoyable (average “Sum Health
Left” of 55 and 72.3 over the span of ten playtests each). The pacing was faster
using the first solution compared to the second solution which is related to the
higher values of Player Unit Attack Power and Zombie Unit Attack Power. The
third solution did not provide a challenge at all (average “Sum Health Left” of 135.7
over a span of seven playtests).

8.1.6 Result and Insights

• A satisfying solution was found by the manual balancing process, which was
considered challenging yet enjoyable.

• Good solutions found automatically by the Balancing Environment can be
challenging and enjoyable, too. Differences in playstyle between a human and
the AI may render some good solutions found useless, though.

• During manual balancing, it became obvious that Player Unit Attack Distance
can be exploited by the player and therefore has to be adjusted with caution,
generally speaking it should not be set to a high value.

– The third solution identified by the BE the player was provided with
seemed to confirm the following statement: Player Unit Attack Distance
of two in the hands of the player already tilts the fights in favor of the
player (units). The AI tends to place player units very close to the zombie
units, not (ab-)using the Player Unit Attack Distance.

• It seemed that out of all the possibly existing satisfying solutions the manual
and automatic balancing looked and found very different ones.

8.2 2D Roguelike Game

The 2DR game and Unity tutorial was the second game used by us for manual
balancing in the same setup as for the automated approach. Manual balancing was
conducted to the main scene without leaving out game elements to reduce complexity
as in the ZVG.

8.2.1 Preliminaries

As for the manual balancing approach for the ZVG the manual balancing process
was oriented on the impressions from The Art of Game Design – A Book of Lenses
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by Jesse Schell (see [Sch14] and the insights gained during the presentation by Blue
Byte GmbH. Basically the same information as for the ZVG were taken into account
(see 8.1.1 Preliminaries). For the 2DR game, the goal was to provide the player
with a reasonable challenge. A player should strive to reach a higher level with each
playthrough. It had to be determined which parameters were to balance and which
ones were fixed values in the game setup. The same balancing methodologies as for
the ZVG were used, as doubling and halving or simple guessing.

8.2.2 The Balancing Process

As for the manual balancing process for the ZVG a number of assumptions were
made before working on the manual balancing process:

1. Cases where bugs occur with a major influence on the outcome of the playthrough
are to disregard.

2. The fitness function is set up in a way that a new player is able to achieve
level 15. Any playthrough not ending in level 15 is punished in a way that
the punishment is harder the greater the distance between the actual level the
player died from level 15. In this way a playthrough in which a player reaches
level 13 or 14 can still be considered as “good”, but not as “good” as if the
player reached level 15.

3. The player starts with 100 food points. The fitness function as well as the
ranges for the parameters are in line with this. Using this way we avoid e.g.
food tiles that give the player a ridiculous amount of food or enemies that deal
a too high damage to the player.

These assumptions in mind, the manual balancing process from the ZVG was adapted.
The adapted steps are:

1. Create an Excel sheet showing all relevant parameters

2. Add default parameter values as an initial set of parameters

3. Play the game using the parameters

4. Analyze the playthrough

a) Check the number of survived days
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i. If a player survived around 15 days, mark the playthrough as good.

ii. If a player survived more than 18 days or less than 13, mark the
playthrough as not good.

b) Check the fitness

i. If fitness is very high, consider that levels in playthrough are unevenly
difficult.

ii. If fitness is very low, consider difficulty as conform to the wanted
increasing difficulty over the levels.

5. Repeat steps three and four until three solutions without major issues are
generated

6. Adjust the parameters based on observations

a) One parameter at a time

b) Use doubling and halving in order to find boundaries

7. Document the parameter changes in the Excel sheet

8. Repeat steps four and five until doubling and halving does not yield useful
results anymore

9. Use “brute force approach” in order to find appropriate parameter values
between the previously identified boundaries

10. Repeat steps three to five and seven and continue to use “brute force approach"

11. Successfully identify a “good" or satisfying solution

8.2.3 Parameter Setting

In order to determine which parameters should be fixed and which parameters should
be variable and part of the balancing process, a group discussion was conducted.
The discussion yielded the following classification:
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Fixed Variable

Start Food Point Player Damage to Wall
Location of Start and Exit Value of Food Tiles
Hit Points of Destructible Walls Enemy Damage to Player
Map Size Number of Food Tiles
Number of Enemies Number of Destructible Walls

Food Loss per Action

Table 27: Overview of fixed and variable parameters for 2DR.

8.2.4 Documentation of the Manual Balancing Process

For documentation and supporting the process an excel sheet was created with the
following columns:

• Date

• Solution ID

• Starting food

• Map size

• Wall hit points

• Enemy unit number

• Player unit attack power

• Food loss per action (for player unit)

• Zombie unit attack power

• Food tiles amount

• Walls amount

• Days survived (indicates the reached level)

• Fitness (value of the fitness function)

• Issue (indicates if issue occurred during playthrough)
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• Comment

All three chosen testers followed the preliminary balancing process and documented
each playtest using the Excel sheet. The parameters were set to the default values
for the first two playthroughs in order to get a feeling for the game and get used to
the controls. Next, a single parameter got adjusted using the doubling and halving
method. After identifying boundaries, the player started guessing values for the
parameter that is currently being adjusted within the identified boundaries.

8.2.5 Insights

Three players generated each one around 100 playthroughs and approximately 30
solutions. The players were able to identify different trends. One player discovered
that adjusting walls while keeping everything else at default values can result in
satisfying solutions, while another player identified a correlation between zombie
attack power and food item value. Zombie attack power should approximately stay
at double the food item value, so that the average taken damage by a zombie is
compensated by the average collected food. Furthermore, all players agreed that a
large amount of food items with a low value each is preferred over a small amount
of food items with a high value each, because this provides the player with more
flexibility when choosing a path or lowers the disadvantage of discarding hard to
reach food items. In the end, only the "Wall and Default" approach came close to
satisfying solution, although no specific wall amount can be given, rather a range
was identified. A wall amount between 19 and 22 was identified as satisfying.

Even though, a clear result and identification of “good” solutions were difficult
to define. Identified reasons are:

1. Each level can be different, due to the fact that all game elements are positioned
randomly on the map. This resulted in a high variation in the solutions of one
set of parameters.

2. The three generated solutions for each parameter set may not be sufficient
enough, as the high variation of the solutions indicates. A higher amount of
solutions, preferably ten or more, would have been a better choice in regards
to the variation, but also too time consuming at that state of the project.
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9 Simulation

9.1 Data Logging

The parameter pairings which are created with the BE need to be logged in order
to use them for any kind of data analysis. For this purpose CSV files were created.
In order to log data for both games as well as a session and population file two,
two classes were created. One for the ZVG and one for the 2DR game, both are
called WriteToCSV.cs. Listing 15 and Listing 16 show both class constructors for
the session and population file. The logic for both files is almost completely identical,
which is the reason why the shorter version is chosen for the given examples here.
Most of the time this will be the 2DR version. The fully commented code can be
found in the Git repository, as well as the attached DVD.

The session file is used to log every single solution of a run. Therefore we can
pass two things: First of all the file name and secondly the first set of features. The
first set of parameters are our default values for the parameters. We extract the
names of the features in order to write the first (title) row later into the CSV. After
that we call the function which creates the session file (cf. Listing 15).

Listing 15: Class Constructor for the Session File (ZVG/2DR).

1 public WriteToCSV(string sessionFileName ,Feature [] features) {

2 this.sessionFileName = sessionFileName;

3 foreach (Feature feature in features) {

4 rowTitles.Add(feature.GetName ()); }

5 CreateSessionFile (); }

The population file only logs the solutions which are in the current population.
Passing the first set of features is not necessary in this case, since the first initial
solution is not relevant for the population. We only pass the file name for the
population file and call the method which creates the population file (cf. Listing 16).

Listing 16: Class Constructor for the Population File (ZVG/2DR).

1 public WriteToCSV(string populationFileName) {

2 this.populationFileName = populationFileName;

3 CreatePopulationFile (); }

The creation of the session file (Listing 17) and population file (Listing 18) are almost
identical. They only differ in two minor points. The first one is that they are saved

103



in different directories depending on the game (ZVG and 2DR) and the type of
document (session and population). The second difference is that the session file gets
an extension to its name. The current date and time are appended to the file name.
This was mainly done for testing purposes, so that it was not necessary to delete old
files. Otherwise they work the same, which means they use the main directory of the
repository and create files in their dedicated CSVLogs directories. Additionally, a
FileStream and a StreamWriter are used to open up a connection to the files and
to write into the files. As long as the simulation is running a connection is opened in
order to instantly write new lines.

Listing 17: Create Session File (ZVG/2DR).

1 public void CreateSessionFile () {

2 DirectoryInfo workingDirectory = new DirectoryInfo(Environment.

CurrentDirectory);

3 string savePath = workingDirectory.Parent.FullName + "/CSVLogs/

ZVG/Session";

4 string dateTime = DateTime.Now.ToString("yyyy -MM-dd HH -mm -ss");

5 sessionFilePath = string.Format("{0}/{1}_{2}. csv", savePath ,

sessionFileName , dateTime);

6 session = new FileStream(sessionFilePath , FileMode.Append ,

FileAccess.Write , FileShare.ReadWrite);

7 writerSession = new StreamWriter(session); }

Listing 18: Create Population File (ZVG/2DR).

1 public void CreatePopulationFile () {

2 DirectoryInfo workingDirectory = new DirectoryInfo(

Environment.CurrentDirectory);

3 string savePath = workingDirectory.Parent.FullName + "/

CSVLogs /2 DRoguelike/Population";

4 populationFilePath = string.Format("{0}/{1}. csv", savePath ,

populationFileName);

5 population = new FileStream(populationFilePath , FileMode.

Append , FileAccess.Write , FileShare.ReadWrite);

6 writerPopulation = new StreamWriter(population); }

Now that the logging files are created the next step is to write content into them. The
first line is always the title row, which contains all the different features, parameters,
and other important values that need to be logged. An overview of the contents can
be seen in Table 28. The title row contents were already collected for the session file
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Both Content

Time Current date and time at the moment of logging
Generation Current generation of the EA
SolutionID ID of the current solution

ZVG Content

Time To Consume The time interval between food is consumed
PU Attack Power Attack power of player units
PU Attack Distance Attack distance of player units
ZU Health Health value of zombie units
ZU Attack Power Attack power of zombie units
Fitness 1 First fitness value depending on chosen fitness function
Fitness 2 Second fitness value depending on chosen fitness function
Fitness 3 Third fitness value depending on chosen fitness function
Is Goal Achieved Boolean value which states if the goal is achieved
Player Alive Number of alive player units
Zombies Alive Number of alive zombie units
Junk Gathered Amount of junk gathered in the game
Food Amount of overall food in the game

2DR Content

Enemy Attack Power Attack power of enemy units
Food Value Amount of health gained from food tiles
Player Wall Damage Amount of damage dealt to walls
Number of Walls Amount of wall tiles on the map
Number of Food Amount of food tiles on the map
Food Loss per Step Health lost per action
Fitness Fitness value at the end of the game
Days survived Number of days played

Table 28: Title Rows of ZVG and 2DR CSV Logs.

from the default parameters (cf. Listing 15). Therefore, the method checks if the file
is empty, since the title row should only be written once into an empty file. If an EA
is being logged the generation column will be added, otherwise the title row will be
written without the generation column (cf. Listing 19).

Listing 19: Appending Titles to the Session File (2DR).

1 public void AppendTitles () {

2 if (new FileInfo(sessionFilePath).Length == 0) {

3 if (Algorithm.instance.DoWeNeedGeneration ()) {

4 StringBuilder titleText = new StringBuilder("Time ,

Generation ,SolutionID ,");
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5 titleText.Append(String.Join(",", rowTitles.ToArray ()) +

",");

6 titleText.Append("Fitness ,Days survived");

7 writerSession.WriteLine(titleText.ToString ());

8 writerSession.Flush (); }

9 else {

10 StringBuilder titleText = new StringBuilder("Time ,

SolutionID ,");

11 titleText.Append(String.Join(",", rowTitles.ToArray ()) + ",

");

12 titleText.Append("Fitness ,Days survived");

13 writerSession.WriteLine(titleText.ToString ());

14 writerSession.Flush (); } } }

For the population file the titles need to be extracted from the passed population
array, since the first default solution cannot be utilized. Otherwise the logic of both
title appending functions is the same. All necessary feature names are being written
into the first row of the corresponding CSV files (cf. Listing 20).

Listing 20: Appending Titles to the Population File (2DR).

1 public void AppendPopulationTitles(Solution [] population) {

2 foreach (Feature feature in population [0]. GetFeatures ()) {

3 rowTitles.Add(feature.GetName ()); }

4 if (new FileInfo(populationFilePath).Length == 0) {

5 StringBuilder titleText = new StringBuilder("Time ,

Generation ,SolutionID ,");

6 titleText.Append(String.Join(",", rowTitles.ToArray ()) + ",

");

7 titleText.Append("Fitness ,Days survived");

8 writerPopulation.WriteLine(titleText.ToString ());

9 writerPopulation.Flush(); } }

Logging a solution for the session file or the population file is quite similar (cf. Listing
21 and 22). The only major difference is the fact that the population file always has
a generation column. This means a check if the column is needed is not necessary.
Otherwise the writing of a solution is quite straight forward. The needed content
(cf. Table 28) will be included into a string in which every word is separated by
a comma. After building the entire string it will be written into a new line. This
will be done for every single solution. In the case of the population file we do this
for every solution in the passed population. For the population file the number of
written solutions depends on the population size.
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Listing 21: Appending a Solution to the Session File (2DR).

1 public void AppendSolution(Solution solution) {

2 AppendTitles ();

3 string generation;

4 string dateTime = DateTime.Now.ToString("yyyy -MM-dd HH:mm:ss");

5 if (Algorithm.instance.DoWeNeedGeneration ()) {

6 generation = Algorithm.instance.GetCurrentGeneration ().

ToString ();

7 StringBuilder solutionText = new StringBuilder(dateTime + "

," + generation + "," + solution.ToString ());

8 writerSession.WriteLine(solutionText.ToString ());

9 writerSession.Flush (); }

10 else {

11 StringBuilder solutionText = new StringBuilder(dateTime + "

," + solution.ToString ());

12 writerSession.WriteLine(solutionText.ToString ());

13 writerSession.Flush (); } }

Listing 22: Appending a Solution to the Population File (2DR).

1 public void AppendPopulation(Solution [] population) {

2 string generation;

3 string dateTime = DateTime.Now.ToString("yyyy -MM-dd HH:mm:ss");

4 foreach (Solution solution in population) {

5 generation = Algorithm.instance.GetCurrentGeneration ().

ToString ();

6 StringBuilder solutionText = new StringBuilder(dateTime + ","

+ generation + "," + solution.ToString ());

7 writerPopulation.WriteLine(solutionText.ToString ());

8 writerPopulation.Flush(); } }

After the algorithm reached its termination criterion or criteria the opened FileStream
and StreamWriter need to be closed, so that no problems arise regarding the file
access or file locking. This is done by two very simple methods. Once again one
for each file (cf. Listing 23 and 24). The Close() methods of the FileStream and
StreamWriter classes are called to close the current streams and to release the file
and any resources associated with the files.

Listing 23: Closing Streams to the Session File (ZVG/2DR).

1 public void Stop() {

2 writerSession.Close ();
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3 session.Close (); }

Listing 24: Closing Streams to the Population File (ZVG/2DR)).

1 public void PopulationStop () {

2 writerPopulation.Close();

3 population.Close (); }

9.2 Simulation Description

Simulation refers to the the actual run-times of the BE in which the BE is repeat-
edly set-up manually on different games with different scenes and goals, player AIs,
fitness functions, game parameters and with different optimization algorithms and
their respective configurations. The simulations (run-times) were collaboratively
documented within a shared online spreadsheet containing the information of the
entire configuration set, as introduced in chapter 5 for run-time 289. The simulation
consisted of three phases.

Phase 1 was dominated by constructing a reliable version of the BE for the ZVG.
For several weeks, the reliability could not be confirmed due to the above-outlined
showstoppers. It was unclear whether the general workings of the BE were fully
functional. Moreover, in situations of error occurrences, it could not be determined
whether the errors should have been attributed to the inherited game bugs or the
general working of the BE. Eventually, this was overcome, however it continued to
be necessary to run the game in real-time game-speed.

In Phase 2, after resolving the major bugs, the BE was tested several times with
the EA to see if it provided valid and reliable results. This could be confirmed by
reading out the CSV logs as well as testing the results manually (see above). A
certain setup of the BE for the ZVG turned out to work most reliable.

108



BE Component Setting

Game Zombie village game
Scene Scene to balance
Goal Survival goal
Player AI Aggressive and resource player behavior
Optimization algorithm Evolutionary algorithm
Fitness function Weighted fitness function

Table 29: Standard BE setup for the ZVG.

AI Parameter Setting

AI active YES
AI decision delay interval 2
Indifferent distance 10
AI health limit 0.05
AI junk limit 10

Table 30: Standard setup of the Aggressive and resource player behavior.

SG Parameter Setting

Health limit 0.05
Number of alive player unit 1
Target amount of health 50
Health weight 1
Target amount of food 5
Food weight 6
Starting food 20

Table 31: Standard setup of the Survival goal (also for run-time 289).

Phase 3 was dedicated to finding the best algorithm configuration and consumed
most of the simulation resources due to its inherit necessity of comparing a larger
number of run-times with different setups. In total this accounted for 353 run-times
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out of 379 total simulations. When simulating the ZVG the standard setup was
applied at all times. According to the F-RACE parameterization each of the following
20 algorithm configuration that were generated randomly from the permissible set of
ranges (see table 22) have been tested 10 times with different random number seeds:
928300, 720732, 574453, 920235, 846611, 398564, 276979, 519523, 455329, 316480.

No. EA variant µ λ pm σ

1 EA3 7 20 - 3.57
2 EA1 6 19 - 2.89
3 EA5 9 13 - 0.85
4 EA3 10 12 - 0.91
5 EA4 10 15 0.28 0.56
6 EA1 10 11 - 1.92
7 EA2 9 20 - 1.92
8 EA5 6 18 - 3.87
9 EA5 10 14 - 0.57
10 EA4 9 17 0.19 3.82
11 EA3 9 18 - 1.78
12 EA2 8 14 - 0.24
13 EA3 6 12 - 1.11
14 EA2 9 14 - 0.13
15 EA3 6 14 - 0.06
16 EA3 10 20 - 1.95
17 EA3 6 14 - 2.39
18 EA5 8 17 - 2.4
19 EA2 6 15 - 1.6
20 EA5 6 15 - 1.59

Table 32: Fixed algorithm configuration parameters.
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10 Data Analysis

The previous sections amplified how manual and automatic balancing produce data
and how the best algorithm for this can be chosen. Data Analysis is now applied on
these results in order to efficiently find the best solutions.

The analysis was driven by practical questions that might be of interest for game
designers, like:

• How long does the algorithm need to get good results?
• Which parameters are more important in a scene?
• What are good parameter combinations?
• For a given parameter combination, can we predict how good a game is?

For all of these questions data analytics techniques deliver answers fast and reliably.
This section will now elaborate on the main outcomes of the analysis, namely:

• The Algorithm Performance Report
• The Top Solutions Report
• Balancing Mechanisms explained through Heatmaps
• Fitness Prediction

All analysis was conducted using the statistical R programming language.

10.1 Algorithm Performance

The Algorithm Performance Report provides a comprehensive view on the fulfillment
of general requirements during the simulation to be examined. Not only does it
include information on time aspects but also overall development of fitness values
per population and a list of location parameters per variable in the data set. In
addition, it provides a table with information on the settings of the algorithm
configuration and general setup of the game. This information is taken from the
production schedule and is displayed to ensure all settings have been made as desired.

Figure 37 gives an illustration of what a performance report should look like. In
order to know when and how long the simulation was performed, the top left corner
of the report delivers the runtime coupled with the start and end time stamp. In
the example of figure 37 the algorithm took about four hours. To see if the algo-
rithm converges satisfyingly to a minimum, the graph shows how the mean of the
populations evolved over time. For the graph of run 293, the performance graph
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Performance Report

Algorithm configuration:

Figure 37: Algorithm Performance Report Example.
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demonstrates a steep slope at the beginning and convergence to very low fitness
values in the long run. This can be interpreted as a fast and at long sight reliable
achievement of good solutions. Hence, the algorithm performed well in this case. A
summary of all variables given in the data set is listed below the performance graph.
This can be exploited to comprehend for instance what value ranges of parameters
the algorithm used, how many of the solutions were games the player won or lost, or
what minimum fitness value was achieved. In the case of run 293 for example, the
algorithm did not exploit the whole ranges of player unit attack power (PU AP) and
zombie unit attack power (ZU AP) values. From the algorithm configuration table it
can be seen that configuration 19 was used for this run. This was done intentionally
since this was delivered as the best configuration so far from the F-RACE algorithm
(see chapter 6.5).

To conclude this chapter, sample questions that could be answered using this report
are:

• How long did it take to get results?
• Did the algorithm perform reasonably?
• What is the best fitness value achieved?
• What parameter value ranges were checked during the simulation?
• Which algorithm configuration settings were used?

10.2 Top Solutions

One of the core values of this work product lies in the provision of the Top Solutions
Report. It delivers information on the top solutions the algorithm has found that
can be directly applied to the game to be balanced.

The report is split in two parts: A list of the top 20 solutions found during the
simulation and a scatterplot visualizing further information regarding them. If a
designer for example needs five different but equally good levels, he/she can pick them
from the list and then only needs to test if they fulfill the expectations. Furthermore,
the scatterplot demonstrates how parameters are related for the top solutions. On
the diagonal each of the game parameters and the fitness are shown. The upper
right panel and lower left panel depict the respective correlation values or point
combinations for each pair combination. The Spearman correlation is shown in the
upper panel of the diagram. High absolute values are assigned a larger font size. A
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positive correlation means that high values of one parameter lead to high values of
the other whereas negative correlation means that high values of one parameter lead
to low values of the other. The example of run 293 shown in figure 38 reveals that
the PU AP and ZU AP of ZVG are correlated. Especially the zombie parameters
have a strong influence on the fitness. The diagonal and the lower panel give a first
idea about what good parameter values are. For example, the only value for the time
to consume present in the best solutions of run 293 is a value of 1. By comparison,
most of the values for the PU AP are at 7, but one could also pick 9 or 8.
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Top 20 Solutions Report

Figure 38: Top Solutions Report Example.
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Use cases addressed by the Top Solutions Report would be:

• A certain amount of good, but different levels is needed.
• The influence of parameters on the fitness for good solutions should be exam-

ined.
• Parameter correlations need to be understood.
• Parameter values for the best solutions should be shown.
• Good parameter combinations are to be identified.

The described report already is a good starting point to understand how lever
relocation of the game affects its result. Even so, a general knowledge on how the
game parameters influence its balance cannot be acquired. Nonetheless, this would be
of value for a broader understanding of the game and general balancing mechanisms.
Thus, another tool was added, which will be delineated in the next section.

10.3 Balancing Mechanisms

To visualize the effect of changes to certain game parameters to the fitness of a game,
heatmaps are a good tool to choose. The concept of heatmaps is well-established
in statistics and was applied in several scientific areas already, as pointed out for
example by [WF12]. As opposed to the widely used cluster heatmaps that display
cluster trees on vertical and horizontal margins, the heatmaps generated for this
PS follow a more simplistic logic: Each axis represents one parameter and its value
range. The space between the axes is then separated into rectangular tiles. Each
tile is shaded on a color scale from blue to red to represent the fitness value of the
corresponding combination of parameter values.

A separate algorithm class (Two Parameters) in Unity generates a constant, manually
defined solution and then simulates the game by iterating through the possible
combinations of two parameters. These can be defined by hand prior to running the
algorithm. The fitness results achieved are subsequently comparable. That said, it is
recommendable to check for good solutions first before the heatmaps are applied. A
good solution should be chosen as the constant solution for the algorithm. This can
be picked using the Top Solutions Report for example that was explained in section
10.2 before. For the heatmaps presented here, the following constant values were
chosen:
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• time to consume: 4
• player unit attack power: 7
• power player unit attack distance: 6
• zombie unit health: 90
• zombie unit attack power: 3

A result of heatmaps created for ZVG is depicted in figure 39. Since the ZVG was
created in a way s.t. the results of the fitness are deterministic, these heatmaps
reliably inform the viewer about good parameter combinations. For the case of ZVG,
those tiles were removed that correspond to a solution where the player AI lost the
game. Consequently, a very attractive solution would be one with a good fitness
value that is also close to one or several unavailable tiles. That is to say that for
those combinations the likelihood of the game being challenging for the player is
much higher which by logical inference makes the game more interesting and fun.

Figure 39: Sample Heatmaps for ZVG.

In case a game’s fitness outcome is stochastic, the method applied for ZVG would not
be sufficient. It is very likely that for many games the assumption of a deterministic
fitness outcome does not hold. For instance, the 2DR game logic includes some
randomness in the content generation (e.g. positioning of walls and food). Thus,
heatmaps would need to account for the underlying uncertainty. To do so, several
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simulation runs for each parameter combination were created and the mean fitness
over all results was calculated. The resulting map can however not inform about how
far the single values are distributed from the mean. Therefore, an additional heatmap
delivers the standard deviation values of each parameter combination. Knowing
these, those tiles with the best mean fitness values and lowest standard deviation can
now be chosen as solid good solutions by a designer. Sample heatmaps for means
and standard deviation are shown in figure 40. To directly infer good solutions, the
results from figure 40 a) and b) were merged into one in c), showing only those mean
fitness values with a low standard deviation (smaller than ten).

a) 2DR: Mean fitness
after five runs

b) 2DR: Fitness standard deviation
after five runs

c) 2DR: Mean fitness with low SD
after five runs

Figure 40: Heatmaps for non-deterministic fitness outcome in 2DR.

To wrap up the results of this section, it is now possible to analyze games with
deterministic as well as non-deterministic outcomes with respect to parameter combi-
nations and their influence on the game’s fitness. The heatmaps represent variations
of a previously chosen good solution that can be better understood using them. At
the current stage, it is necessary to compare parameter combinations side-by-side to
learn the best value range for each parameter as it was done in figure 39. A next
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step of this could be to aggregate this information to a higher level. Depending on
the desired difficulty level of a scene, the heatmaps also give an indication on the
parameter combinations that could be chosen.

10.4 Prediction of Fitness and Game Outcome

Even though possibilities exist to shorten the time of simulations, the more complex
a game gets, e.g. in terms of the number of game parameters, the more difficult
and time consuming it becomes to create a reasonable amount of simulations. One
idea to overcome the issue can be the replacement of the real simulation by the
accurate enough predictive model. Indeed, since simulation is not a bottleneck
anymore meta-optimization process can be done relatively fast, the problem even
can be tackled in a brute force way. However, getting one optimal solution is not the
central idea here, since any predictive model is not 100% accurate. Game designers
can profit from the approach in three ways:

1. most of the near optimal solutions can be identified;

2. complex parameter interdependencies can be inferred;

3. feature importance can be estimated.

The first point can be valuable then interesting, but at the same time very diverse
content is required. The last two points are required to better understand the game
and predict how parameter changes can influence it.

Predictive analytics techniques can predict the fitness of a game by exploiting
a small but large enough data set sample of the search space to be explored. The
technique used in this PS is ANNs that were trained by a large ZVG sample (1.5K
observations) and then tested in terms of accuracy of the prediction. The implemen-
tation of this was supported by the R-packages neuralnet (supporting ANN), dplyr
(facilitate work with data sets), and MASS (support the boxplot transformation). The
code can be found in file RCode/Model.R of the PS gitlab. Since the results of the
ANNs models fitting and cross validation are non-deterministic, reproducibility is
guaranteed using a seed value at the beginning. Then, data are prepared, such that
if the goal is not achieved (player AI has lost the game) a penalty of 100 is added to
the fitness value. Scaling usually is recommended, thus the data were transformed
using min-max scaling. Two models are used to predict the outcome and fitness of
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the simulation, both models utilize ANN with two inner layers (8 and 3 neurons).

Accuracy of the models is validated by 20-fold cross validation. For the 20-fold
cross validation every observation is assigned to a fold, for the model to be fitted on
all except one fold and tested on the unseen fold. After cross validation and splitting
the data into training and testing set, two neural nets were fitted. Both were needed
to check for two different outcomes: goal achievement and fitness value. To calculate
the errors, the min-max transformation is reverted and the Mean Squared Error
(MSE) for the fitness and misclassification rate for the goal prediction are calculated
and visualized. The results can be seen in figure 41. Concluding from the boxplots,
the prediction of the goal achievement is quite reliable with most of the values being
roughly between one and three percent and a maximum value of five percent. The
mean squared error is shown in the lower boxplot of Figure 41, the mean error of
21 seems to quite reliable taking into account the general range of fitness from 0
to 500. Whereas the model and code provided proof that the general concept of
fitness prediction is very promising; for example, the model can be used to enhance
optimization algorithm pruning weak solutions.
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Figure 41: Prediction of the outcome of the ZVG simulation and fitness value.
Errors based on 20-fold cross validation.

It is outlined already that this approach can be relatively useful for a game designer
to create diverse content consisting of different good solutions. Thus, developed
predictive models were queried by all the possible combinations of game parameters
(220K). A solution was considered good enough if the predicted outcome is a win of
a player and fitness is below 50. Figure 42 shows a sample of 10 out of 560 identified
solutions. It can be seen from the figure that most of the solutions are the trade-offs
between a pair of parameters, exemplary trade-offs are marked by red arrows at
the figure. Some of the identified solutions were manually tested and the general
impression was that the approach worked quite well, predictions were really close to
the real values.
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Figure 42: Good Solutions.

In order to understand underlying parameter interdependencies the identified 560
good solutions were scrutinized. Indeed, since trade-offs are clearly seen in the
obtained sample, it would be reasonable to identify functional dependencies between
some parameters. This analysis can help the game designer to better understand
possible correlations and predict the outcomes of possible changes in the game.
Figure 43 clearly shows the linear functional dependency between player and zombie
attack powers. Interestingly, this figure perfectly matches with Figure 39 (bottom
right plot) that is based on the actual simulations, in spite of the fact that all the
solutions were found querying predictive models.

Figure 43: Optimal Attack Power ratio.

Another important application of the approach is feature relevance, indeed game
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designer can either underestimate or overestimate the influence of the parameter on
a game. Such misunderstanding can dramatically affect the game after a "small"
update. Thus, in order to give an impression about parameter relevance predictive
models can be used again. In order to estimate parameter relevance, each parameter
was shuffled within the sample and then the increase of error rate was measured.
This approach voids the affect of the parameter, but at the same time considers
it as relevant. After evaluating the error increases they were scaled by the biggest
increase. Thus, the parameter that gives the biggest increase of error rate has 100%
of importance. Figure 44 shows the feature importance related to goal achievement
and fitness. It can be seen from the figure that the results match with the logic and
zombie and player power attack both dominate other features in terms of importance.

Figure 44: Feature Importance.

The predictive approach seems to be a rather promising idea, it both can be used
for exploring good solutions and understanding game parameters. However, it has a
crucial limitation - the bigger the number of parameters is, the bigger sample should
be obtained to train the model. At some point it can become infeasible to obtain
such a big sample. In the above example a sample of 1.5K observations was used and
the model captured the underlying relationships quite well. However, considering
that an optimization process normally requires 400 simulations one can say that such
an approach is an unaffordable luxury in game design.
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11 Balancing Process Model

11.1 Modeling Approach: BPMN

Our model aims to provide a shared understanding of the mechanisms in Game
Balancing and connects the design and implementation layer. We modeled our
concept processes in the Business Process Model and Notation (BPMN) language,
an established standard in Business Process Management utilizing flowchart displays.
BPMN features three main flow objects (Events, Activities and Gateways) which are
linked by connector objects and grouped in Swim Lanes. Furthermore, artifacts (e. g.
data objects/reports) can be attached to activities. Activities also can be specified
forms (e. g. user/service).

11.2 Main Process: Balancing in Games

Our main process presents an overview of the flow of the five subprocesses and their
associated data objects (cf. Figure 45).

11.3 Subprocess 1: Assess Context

To begin the process of game balancing, some preliminary steps are necessary. The
first step in our main process is the process of assessing the context. As a pre-
evaluation a game is selected first. The game is described in regards to its content,
genre and mechanism in the Game Description. This description is used as a reference
point to define the goals of the balancing process. The idea of how a game should
be in the final state can be very different as can be seen e.g. the twelve described
balancing goals by [Sch14]. The selection of goals for the balancing process has to
be in line with the intended game as defined in the Game Description . The Goal
Description includes a detailed description of the chosen goals. The Stakeholder
Report includes information about the target group of the game as well as the
parties involved in the game development process. Once the balancing goals are set,
the pre-evaluation is completed and one can continue with the next subprocess Set
Environment(cf. Figure 46).

Input

• No specific input.
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Figure 45: Balancing in Games Main Model.
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Output

• Game Description

• Stakeholder Report

• Goals Description

• Short description of the Subprocess and Outcome

• Objectives

• Requirements

Figure 46: Subprocess: Assess Context.

11.4 Subprocess 2: Set Environment

Setting up the environment follows the logic of chapter 5 (cf. Figure 47).

• Choose Set of Scenes: At first, it should be chosen which scene or set of
scenes want to be used for balancing. The selection of a scene can have large
implications on the balancing outcome. If one chooses a scene which is a
comprehensive representation of the full game version including all its potential
complexity, then this will have dependencies on the choice and availability of
the other components, like the player AI or winning condition (goal). At the
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current state of research, it is recommendable to apply the BE to a dedicated
selection of the final game version to balance a certain subset of the game.

• Choose Parameters: After the choice of the scene follows the parameter
selection. This is the set of game parameters that are subject to change. They
are kept as the only real decision variable within the BE for finding an optimum.
It needs to clarified which parameters exactly should be optimized in terms
of balancing. The amount of parameters generally has an impact on the time
complexity of the environment as well as the value ranges. Hence, additionally
the boundaries need to be defined, i.e. within which value ranges is the BE
allowed to generate-and-test candidate solutions. Importantly, all of these
parameters are should be different to the ones measured by the fitness function.
For example, if the fitness function measures the distance to the remaining
player health, the game parameter player health itself should ideally not be
included to keep the search space as static as possible.

• Choose Fitness Function: The fitness function is the objective function
towards which the game parameters are optimized. This should be an accurate
representation of the intended goal of the game, e.g. challenge.

• Choose Fitting Optimization Algorithm: Depending on the hardness and
type of the problem, either a deterministic or non-deterministic optimization
method should be chosen. For a small set of parameters with small value
ranges can be sufficient to apply a brute force or even random search. For a
bigger problem, a greedy hill climber may suffice, while for cases with many
more parameters, e.g. above 30 with discrete ranges between 50-100 for each,
it becomes meaningful to apply a non-deterministic algorithm such as an EA.

• Based on the selection above, one can begin developing the BE, i.e. relating
the necessary classes and methods with each other in a way described by the
pseudocode in chapter 5.1.

• Lastly, the parameters of the optimization algorithm should be optimized with
a proper methodology, e.g. F-RACE. This step is especially useful, if it is
known that the current setup of the BE will be used many times.

Input

• Game Description
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Figure 47: Subprocess: Set Environment.
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• Balancing Goals

Output

• Parameter Catalogue

• Algorithm Catalogue

• Algorithm Configuration

11.5 Subprocess 3: Perform Automated Balancing

After setting the environment for the balancing process automated balancing can be
performed. Since no human testers can be used for the automated approach, a AI
has to be configured that is able to play the game as similar as possible to the way a
human plays it. With the configured AI and the set Algorithm Configuration the
game can be simulated. The simulated parameters and their corresponding results
are documented in two separate files, the Population Log and the Solution Log. As a
concluding step the found good solutions have to validated before the automated
balancing process can be finished (cf. Figure 48).

Figure 48: Subprocess: Perform Automated Balancing.

Input

• Algorithm Configuration
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Output

• Population Logs

• Solution Logs

11.6 Subprocess 4: Perform Manual Balancing

As an additional part of the balancing process a manual balancing can be per-
formed to on the one hand try to find solutions the automated balancing process does
not find or on the other hand test solutions found by the automated balancing process.

Before starting with the actual manual balancing, a spreadsheet has to be cre-
ated. This spreadsheet is used as a supportive tool to document the balancing
setup itself, the results of the performer of manual balancing and keep track of his
parameter changes. A description of the used spreadsheets for the ZVG can be found
under 8.1.4 as well as for the 2DR game under 8.2.4.

With such a spreadsheet the actual manual balancing process can begin. The
performer of the balancing starts by adjusting the standard parameters with the help
of methods like doubling or halving. He then conducts a playtest with the changed
parameters. After that the adjustments and results of this playtest are documented
in the created spreadsheet. These three steps are repeated until the performer finds a
satisfying solution. The finding of such a solution ends the manual balancing process
(cf. Figure 49).

Input

• Balancing Goals

Output

• Spreadsheet

• Documentation of results

11.7 Subprocess 5: Analyze Data

As a last step the generated data from the automated as well as from the optional
manual balancing process has to be analyzed (cf. Figure 50). The analyzed data is
used to:
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Figure 49: Subprocess: Perform Manual Balancing.

1. Analyze the performance

2. Analyze the solutions

3. Analyze the balancing dependencies

Figure 50: Subprocess: Analyze Data.

Input

• Simulation Data
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Output

• Performance Report

• Solutions Report

• Balancing Mechanisms Report
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12 Conclusion

12.1 Practical Use of Automated Balancing Tools

Limitations After the final presentation at the Blue Byte GmbH office several
developers and designers discussed the re-usability and application areas of the
project seminar results in practice. Most agreed that the research field of automated
balancing has to be uncovered further and tested by smaller companies before being
used in a large project. As the outcome yet has to prove its profitability, new
approaches like automation result in too much risk for the project. Further problems
indicated are high initial (setup of the BE) and maintenance costs (updating the code
before, during and after every project) and the time pressure video game projects
usually have to resolve.

Opportunities On the other hand, some designers liked the idea of having an
educational tool for game designer – new designers especially could benefit from the
support and insights the balancing environment could provide. The professional field
of balancing mostly relies on experience and having the “right feeling” for parameters
and concepts. Furthermore, designers have a single point of view which can be
expanded by the results provided by the BE that might not have been considered
otherwise. The tool may aid designers by turning the experience (tacit knowledge)
to explicit knowledge which can be understood by other designers, companies or
students. The participants agreed that currently a lack of teaching methods for
new designers exists that could be filled with the results of the balancing tool. The
possibility to re-use the BE for games that are part of a series, e.g. Anno or Assassin’s
Creed, featuring similar game elements and code was discussed as well. However,
since a new entry in a series of games may introduce new core concepts or omit older
concepts and may even use a different game engine, there is no obvious answer as
to whether or not game series are an area where some of the limitations mentioned
earlier do not apply - the approach should be evaluated case-to-case.

Procedural Stages for practice usability Finally, the lead designer proposed
three potential procedural stages that the tool will have to pass until fully utilized in
practice:

1. Embedded Support Tool for Designer

2. Highly Embedded Support Tool for Designer
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3. Embedded Automated Design Tool

12.2 Discussion

The result of the PS has shown that it is feasible to apply a non-manual or semi-
automatic method for the purpose of game balancing, which was achieved through
algorithmic means.

From the practitioner’s perspective, the process of manual game balancing can
be costly with regard to time and money. Alternatively, an automated or semi-
automated approach has the potential to reduce these costs. The application of an
optimization algorithm with a suitable fitness function can then be leveraged to find
promising candidates for a balanced game scenario that suits the intended target
group and supports reaching the intended goal of the game. On the other hand, it
may be required to ex ante invest additional conceptual work as well as developing
activity into this alternative working method. The inputs shown in the working
concept and process model need to be crafted in a fashion to optimally represent the
target player to whom the game shall be marketed. This is specifically true for the
player AI that acts as an agent to simulate the human player. Moreover, in addition
to higher setup costs, the approach bears the risk of not being an accurate enough
representation in the end. Additionally, modern games are complex and offer large
open worlds. Therefore, at this stage in research, any complex game is best divided
into sub-parts or sub-scenes with sub-goals that represent certain aspects of a game.
These sub-scenes can be integrated more easily and with higher flexibility into a
solution like the BE, reducing the risks and increasing the potential of delivering
reliable results.

From a researcher’s perspective, it was shown that there exists a research gap
in applying CI techniques dedicated to the purpose of game balancing. The research
at hand has shown that the methodology can in principle be applied. However, this
does most certainly not mean that this research gap has been filled substantially,
rather it has been opened up to spur further investigation. The approach in this PS
was carried out within a very simplified game environment. On the other hand, it was
applied in two different games from two different genres reinforcing the finding of the
other. In both cases, the technique delivered valid results in a reliable fashion, which
were play-tested manually and rated differently. Conclusively, good solutions were
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among the population of all candidate solutions. To arrive at this point of knowledge
about good value ranges of game parameters manually consumes significantly more
time.

12.3 Outlook

Within the PS it could be demonstrated that the intended methodology of balancing
game parameters through algorithmic means is feasible. This comes not without
saying that there naturally exist limitations that offer suitable candidates for further
research.

• The AI that acts as an agent to represent the human player behavior is an
important lever in simulating the game and algorithmically finding balanced
scenarios. Increasing the quality of the player AI will also increase the quality
of the results from the optimization runs. Developing an accurate model of
a human player is a research stream of its own [YT14]. Hence, it affords to
combine these two research streams similar to the computational discovery of
new game variants [IGT+].

• EAs are known to deliver robust results to very hard problems. In this sense, the
amount of parameters for balancing could potentially be increased significantly.
On the other hand, for a smaller number of game parameter configurations, it
may be more efficient to apply greedier or faster optimization algorithms and
arrive at the same results, but faster. Hence, further comparison studies of
different algorithms may be of interest to identify the threshold for reasonability
in applying heavier population-based methods.

• It is unknown whether in the industry an automated or semi-automated
approach for game balancing exists. The industry is spurred by a growing
number of game releases. Moreover, the market situation has developed
towards a more centralized distribution of games via online platforms. This
drives competition and indirectly the need for higher cost-efficiency in game
developing. In contrast of these circumstances it may be of high interest
whether industry is already applying such methods or if there exists a demand
for it. This could be quantified through a representative survey combined with
a more qualitative approach of interviewing decision-makers, designers and
developers.
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• The process model outlined above was derived from the procedure applied and
experience gained within this PS. Before putting this model into practice, it
needs to be confirmed, rejected, or reformulated by another group of researchers
or students dedicated to a similar scenario.

• The BE was developed within the Unity game engine directly due to technical
constraints. An engine-independent approach would bring several advantages
such as increased simulation speed as well as more possibilities of integrating
other methodologies, e.g. different player AI.

• The conducted play-testing of the algorithmic solutions acted as a purely
subjective benchmark. Empirical quantifying the conducted manual play-
testing could validate player fun.

• Applying this concept to further games of potentially higher complexity.
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