
Constructive Generation Methods for
Dungeons

Seminar-Thesis in Procedural Content Generation for Games

Author:

Marco Niemann

Heekweg 12

48161 Münster

+49 (176) 9320 6605

marco.niemann@uni-muenster.de

Supervisor:

Dr. Mike Preuß

Date of Submission: June 30, 2015

mailto:marco.niemann@uni-muenster.de

Declaration of Authorship

I herebydeclare that, to thebest ofmy knowledgeandbelief, this Seminar Thesis titled ’Constructive

Generation Methods for Dungeons’ is my own work. I confirm that each significant contribution to

and quotation in this thesis that originates from the work or works of others is indicated by proper

use of citations and references.

Münster, June 30, 2015

Constructive Generation Methods for Dungeons

Contents

List of Figures II

List of Tables III

List of Listings IV

Abbreviations V

Symbols VI

1 Introduction 1

2 Definitions 2

2.1 Procedural Content Generation (for Games) . 2

2.1.1 Content . 3

2.1.2 Games . 4

2.2 Dungeon . 4

2.3 Motivation . 5

3 Constructive Generation Methods for Dungeons 7

3.1 Space Partitioning . 7

3.1.1 Areas of Application, Pros and Cons . 7

3.1.2 Background Information . 8

3.1.3 Dungeon Creation Algorithm . 9

3.2 Cellular Automata . 11

3.2.1 Areas of Application, Pros and Cons . 11

3.2.2 Background Information . 12

3.2.3 Dungeon Creation Algorithm . 14

3.3 Evolving Cellular Automata . 17

3.3.1 Areas of Application, Pros and Cons . 17

3.3.2 Overview over Genetic Algorithms . 17

3.3.3 Dungeon Creation Algorithm . 18

3.4 Generative Grammars . 22

3.4.1 Areas of Application, Pros and Cons . 22

3.4.2 Overview over Grammar Types . 22

3.4.3 Dungeon Creation Algorithm . 24

4 Limitations and Conclusion 26

References 27

A Statistics Regarding Percentage of Gamers in Germany 32

I

Constructive Generation Methods for Dungeons

List of Figures

1 Dungeon-Screenshots from different games . 6

2 Different Tree Types for different dimensions . 8

3 BSP Dungeon Generation Algorithm . 10

4 3D-Dungeon Generation Issue . 12

5 Grid and Neighbourhoods of Cellular Automata . 13

6 Statechange in CA with a Moore neighbourhood of level 1 13

7 CA Dungeon . 16

8 CA Dungeon Creation Process Schema . 16

9 GA Offspring Creation . 18

10 GA Algorithm Schema . 18

11 Illustration to clarify ECA Attributes . 19

12 Representations/Rule Tables for the CA in ECA . 19

13 Different Grammar Types Overview . 24

II

Constructive Generation Methods for Dungeons

List of Tables

1 Five desirable PCG properties . 3

2 Six classes of game content . 3

3 Key elements of games . 4

4 Advantages and Disdvantages of Space Partitioning 7

5 Advantages and Disdvantages of Cellular Automatons 12

6 Cellular Automata Steering Variables . 14

7 Advantages and Disdvantages of Evolving Cellular Automata 17

8 Attributes for the Cellular Automata of the ECA . 18

9 Attributes for ECA . 19

10 Comparison of the different representation types for ECA 19

11 Advantages and Disdvantages of Generative Grammars 22

III

Constructive Generation Methods for Dungeons

List of Listings

1 BSP Algorithm for Dungeon Generation - Source: (Shaker et al. 2015) 9

2 CA Algorithm for Dungeon Generation - Source: (Johnson et al. 2010) 16

3 CA Flood Fill Cavern Identification - Source: (Pedersen 2014b) 16

4 Evolving CA Algorithm for Dungeon Generation - Source: (Pech et al. 2015) 21

5 Generative Grammar Algorithm for Dungeon Generation

Source: (Dormans 2010; Dormans and Bakkes 2011; van der Linden 2013) 24

IV

Constructive Generation Methods for Dungeons

Abbreviations

ASM Attribute Similarity Measure

BNF Backus-Naur-Form

BSP Binary Space Partitioning

CA Cellular Automaton/Automata

CS Computer Sciences

ECA Evolving Cellular Automata

env. environment

FPS Frames Per Second

FV Fitness Value

GA Genetic Algorithm(s)

ms millisecond(s)

NPC Non-Player Character

PCG Procedural Content Generation

PCG-G Procedural Content Generation for Games

prev. Previous

RPG Role-Play Game

RTS Real-Time Strategy

V

Constructive Generation Methods for Dungeons

Symbols

number of/count

VI

Constructive Generation Methods for Dungeons

1 Introduction

Chances are high, that most people who will read this will have played some kind of a video game;

be it the retro games back in the 1980s and 90s when computer games became popular or one of

the more up-to-date mobile games.

However chances are probably equally high, that terms like Procedural Content Generation (PCG) or

Constructive Generation Methods are unknown to the very same reader. And the justified question

at this point could be:

Why should anyone actually care about it?
→ Because PCG could very well be the next Big Thing in the gaming sector!

And this holds true for both - those who are ’just’ playing them, but also for those who are more

interested in creating them. For those who belong to the group not yet convinced by this answer,

the Definitions section - and there especially the part concerning motivation - will be a good start

to get a better insight. Just to foreshadow some bits: While the idea of ’Time being money’ will be

proven again, the idea that ’Everything has an end’ will possibly be one to question after reading

the thesis.

But why dungeons?
→As they are one of the PCG origins and still a popular element of many RPGs and FPS.

Those who not already fought through a virtual dungeon could have a look at the part concerning

Dungeons to get a better idea of what this is all about.

Another part of the answer of course is, that this seminar thesis only has limited space whereas the

research area of PCG is already pretty large. And as some preliminary research in the ’PCG Book’

by Togelius et al. (2015b) revealed some intersting algorithmic solutions in the area of dungeon

generation, the decision was made to write this thesis in exactly this area.

Finally three algorithms (Space Partitioning, Cellular Automata and Generative Grammars) and one

extension (Evolving Cellular Automata) were chosen to be discussed in more detail in the main part

of this paper.

So for everyone who is now eager to get deeper into the topic, the answer to the final question:

And where are the algorithms?
→ Right here: Constructive Generation Methods for Dungeons.

Having read the complete thesis a reader should have a basic understanding of the discussed algo-

rithms, their strenghts and downsides. Furthermore it should become clear, that there is no single

truth in creating dungeons and that most algorithms can be improved, e.g. by combining themwith

others.

1

Constructive Generation Methods for Dungeons

2 Definitions

After already having talked about some topic-specific terms/ideas in the introductory section, it

might be helpful to discuss and define some of the terms. This shall help to establish a common

understanding for this thesis, but also enable readers with no or no strong background in this the-

matic setup to get straight up into the topic.

2.1 Procedural Content Generation (for Games)

As this thesis is settled in the research area of Procedural Content Generation (PCG), it makes sense

to get a definition for this subject first.

Being no particularly young research field, dating back to 1980 when Rogue, the first game employ-

ing PCG mechanisms (Khaled et al. 2013) was published, it seems that PCG is only receiving larger

scientific interest for the last 10 years, when own journals and conferences where established (ACM

2015; IEEE 2015; Bidarra et al. 2010).

This may be one reason, that - instead of one consolidated one - there still is a range from rather

abstract definitions like the Gamasutra (2012) one

The platonic Procedural Content Generation algorithm allows you to create entire uni-

verses by pressing a button.

to more concrete and precise ones like the one Togelius et al. (2015a) use in their yet unpublished

PCG-Book:

The definition we will use is that PCG as the algorithmical creation of game content with

limited or indirect user input.

Here it is interesting to note, that some authors (e.g. Hendrikx et al. (2013)) use the term Procedural

Content Generation for Games (PCG-G) rather than just PCG - probably to clearly separate it from

approaches using PCG for art creation (Wikidot 2009) or movie creation (Massive 2011). Yet most

papers and sources tend to simply use PCG synonymously to PCG-G, so this thesis will follow this

pattern.

What can be derived from both above cited (and also other) definitions is, that the overall aim

of PCG is to go away from manually generating game content, towards an automated/procedural

approach based on algorithms - or to make it short: a mostly1 computer-based instead-of human

based content generation. A real-world example according to Togelius et al. (2015a) could be a tool,

that generates dungeons for a game like The Legend of Zelda without human interaction, whereas

map editors where a player can create RTS game maps would not be considered a PCG tool.

1mostly, as for example Togelius et al. (2015b) and others propose so calledmixed-initiative approaches where com-
puters and humans co-create content

2

Constructive Generation Methods for Dungeons

To make the topic a little more quantifiable/tangible Togelius et al. (2015a) propose the following

five desirable properties when discussing PCG solutions (as we are going to do in the course of this

thesis):

Speed Reliability Controllability Expressivity and
diversity

Creativity and
believability

having content in
time

having content in
a desired quality

human can
specify certain

aspects

diverse set of
content

content should
not look

’generated’

Table 1: Five desirable PCG properties

2.1.1 Content

Since it is the outcome of PCG efforts, as a next step it is helpful to get a better idea of what is

subsumed under the term content.

In their paper on ’Search-Based Procedural Content Generation’ Togelius et al. (2011) (also taken

up in the upcoming PCG Book (Togelius et al. 2015a)) defined (game) content as

content [that] refers to all aspects of the game that affect gameplay other than nonplayer

character (NPC) behaviour and the game engine itself

where they consider these aspects to be things like terrain, maps, levels, stories etc.

A somewhat different2 yetmore extensive approach is taken by (Hendrikx et al. 2013) in their survey

on PCG for games. They provide a six-class taxonomy of procedurally generatable game content

which allows further insights into what content is, but also indicates that content is a rather multi-

then single-dimensional idea:

Game Bits Game Space Game
Systems

Game
Scenarios Game Design Derived

Content

textures indoor maps ecosystems puzzles
System
Design

News and
Broadcasts

sound outdoor maps road networks storyboards World Design Leaderboards

vegetation
bodies of
water

urban env. story

buildings
entity

behaviour
levels

behaviour
fire, water,
stone, clouds

Table 2: Six classes of game content (Hendrikx et al. 2013)

In this thesis multiple classes will be - at least partly - covered: this includes Game Space (outdoor

and indoor maps), Game Scenarios (Levels), Game Design (System Design) and implicitly Game

Bits. Why these types of content matter for the constructive generation of dungeons will hopefully

become clear in the following sections.
2the difference is, that Hendrikx et al. (2013) regard NPCs as part of PCG whereas e.g. Togelius et al. (2015a) argue it

is not - but as this is no concern of this thesis there will be no further elaboration on this fact

3

Constructive Generation Methods for Dungeons

2.1.2 Games

Talking about games in the PCG context does - in contrast to what one might think regarding the

previous sections and the literature often coming from a CS background (e.g. see the references

of this paper) - not only include computer games, but can as well mean board games, card games

and puzzles (Togelius et al. 2015a). For this thesis however, the range will be limited to computer

games, as the setting for the dungeons to be created3.

When it comes to formally defining the termGames there is some conflict, as for example Salen and

Zimmerman (2003)4 point out the difficulties to define the term, but yet provide a definition (that

for example Browne and Maire (2010) take up), whereas e.g. Togelius et al. (2015a) reject the idea

to define the word completely. Yet all of them propose some key elements of games:

Togelius et al. (2015a) Browne and Maire (2010) Salen and Zimmerman (2003)
design rules/means system

affordances play players
constraints outcome/ends artificial
playable conflict

rules
quantifiable outcomes

Table 3: Key elements of games

So it can be stated that a Game somehow involves playing under certain conditions/rules andmust

lead to a certain end with a certain outcome.

2.2 Dungeon

While the original definition of a dungeon, as e.g. given by the Oxford Dictionary (2015), refers to

an underground prison cell, the definition for dungeons in games is less restrictive characterizing

adventure and RPG dungeon levels as labyrinthic environments [(rooms connected by

hallways)], consisting mostly of inter-related challenges, rewards and puzzles, tightly

paced in time and space to offer highly structured gameplay progressions

that can include additional elements like characters (NPCs), decorations etc. (Shaker et al. 2015).

As a distinguising characteristic of dungeon levels van der Linden et al. (2013) identified the ’close

control over gameplay pacing’ respectively the ’tighter bond between designing gameplay and

game space’. To illustrate this idea one can build on the proposed comparison to openworld games

or platform games (van der Linden et al. 2013): So for example in race track game (platform game)

there will usually a predefined track without much variation (as in it’s real world pendant), whereas

in an open-world games like GTA V the player can freely explore the world. In a dungeon game

however, the player may encounter something like a main track/hallway, that leads to an end boss

3even though there are also board games based on dungeons available (Dungeon!; Wizards of the Coast 2015) that
according to Shaker et al. (2015) are predecessors of the modern computer versions

4the definition can be found in Salen and Zimmerman (2003, p.11) - the underlying definitions can be found in Salen
and Zimmerman (2003, p.4-9)

4

Constructive Generation Methods for Dungeons

or a treasure, which has multiple rooms and/or hallways diverging from it - so there is control as

the player will have to follow the main path, but also exploration as there is no prescribed way to

explore the other areas of the dungeon.

Known examples for games employing dungeons are Diablo, Rogue, Doom, Half Life, Sacred etc.

(Adams 2002; van der Linden et al. 2013). Screenshots (Figures 1a-1d) from some of those games

can be found on the next page and maybe help to get a better visual impression of what a ’real

virtual’ dungeon looks like.

2.3 Motivation

So before finally starting with the main part, the last remaining question may be, why the whole

topic is relevant.

One reason is the growing complexity of games5 (Hendrikx et al. 2013) in combination with the ris-

ing number of people playing games (Hughes 2012; BITKOM 2014) (statistics regarding Germany

see: Appendix A), both creating a rising demand for more and more content. The resulting growth

in numbers of content designers from single persons per game to hundreds (Hendrikx et al. 2013)

resulted in rapidly growing expenditures for content generation6. This and also the lack of scala-

bility (Iosup 2011) and timeliness (Kelly and McCabe 2007) made PCG a candidate to either reduce

artists or at least increase their efficiency (Togelius et al. 2015a).

Furthermore real-time PCG instead of manual content generation can help to automatically adjust

difficult levels (Togelius et al. 2015a), so that gamers would always be challenged at their current

level. Also games like Super Tux would not have to end after a fixed amount of levels, as the-

oretically at the end of each level a new one could be generated (Togelius et al. 2015a; Super-

tux.lethargik.org 2014).

The last advantage Togelius et al. (2015a) see, is that a PCG approach, e.g. for dungeon or level

generation, could potentially create dungeons and levels that a human designer might not even

think of and thus offer completely new experiences.

That is plenty of reasons to now have a closer look at algorithms and methods to understand what

is the current state of the art, and where there is still limits.

5Hendrikx et al. (2013) found evidence that already in 2008 the gameWorld ofWarcraft contained about 30.000 items,
5300 interactable creatures etc.

6if the evidence Hendrikx et al. (2013) found is correct, and about 40% of game cost is for content, e.g. for modern
blockbuster productions like GTA 5 the content cost would be about 106 million dollar (McLaughlin 2013)

5

Constructive Generation Methods for Dungeons

(a) Rogue (b) Diablo II

(c) Sacred (d) Doom

Figure 1: Dungeon-Screenshots from different games
Source: (Venator_Noctis 2011; Valencia 2006; Willbr 2006; Artoftransformation 2008)

6

Constructive Generation Methods for Dungeons

3 Constructive Generation Methods for Dungeons

In the main section of this thesis, it will be the aim to discuss a selected set out of the variety of

methods to procedurally generated dungeons.

While Shaker et al. (2015) and van der Linden et al. (2013) typically distinguish three steps to make

up a dungeon generationmethod, most of the followingmethods will focus on the representational

model7 as well as the method to construct that representational model. The translation into the

actual dungeon will not be a central aspect.

Another limit that should be mentioned beforehand is the large focus on 2D games - so what van

der Linden et al. (2013) state regarding genetic algorithms (’may allow some form of 3D mapping,

the current work only focuses on 2D’) holds true for most of the other presented approaches.

3.1 Space Partitioning

To allow a more or less easy entry into dungeon map/level PCG, space partitioning was chosen as

a first method.

3.1.1 Areas of Application, Pros and Cons

This is based on the fact, that Shaker and Liapis (2013) and Pedersen (2014a) categorize this

method as an easy to implement, relatively simple approach. It would be the recommended way to

go, whenever the aim is the creation of a rather structured, neatly aligned dungeon, without over-

lapping rooms. So recalling the desirable PCG properties (see Table 1) one can say that at least in

terms of diversity and believability the structuredness might be a problem - simply because natu-

ral cave like dungeons could not be generated by Space Partitioning, but rather only ’man-made’

dungeon structures (like ’real’ dungeons). And even there too much symmetry might create a feel-

ing of generated content8, so those two points make clear, why the structuredness is one of the

downsides of the space partitioning approach.

Another downside has been found by Williams (2014) regarding the lack of control e.g. over the

number of rooms (reasons see algorithmic description in section 3.1.3), which would violate the

controllability property.

To allow a better overview over Pros and Cons they are summed up in Table 4.

Pro Contra
easy implementation/simple very neat/organized

no overlaps looks ’generated’
easy creation of groups of rooms very limited control

Table 4: Advantages and Disadvantages of Space Partitioning
Source: (Shaker et al. 2015; Shaker and Liapis 2013; Williams 2014)

7to have an arbitrary example of such a model, one could just imagine treating a dungeon as an array of 0 and 1 to
distinguish between wall and stone

8a quote illustrating that notion would be ’There are no straight lines or sharp corners in nature. Therefore, buildings
must have no straight lines or sharp corners.’ (Antoni Gaudi)

7

Constructive Generation Methods for Dungeons

3.1.2 Background Information

This paragraph will give some details about the theoretical background of this method before its

application for dungeon generation will be illustrated.

The basic idea behind the space partitioning algorithm is taking a given 2D/3D-space9 and dividing

it into disjoint10 subsets - typically hierarchically with a recursive algorithm (Shaker et al. 2015). As

a data-structure usually a tree is used to represent the subsets and their hierarchy - also called

space-partitioning tree (Shaker et al. 2015).

For the dungeon-creation the special form of binary space partitioning (BSP) - a technique originally

developed to efficiently display computer graphics around 1980 (Toth 2005; Fuchs et al. 1980)11 -

can be used (Shaker et al. 2015). The BSP method will be used to recursively split a (2D) space in

halves until a certain level of granularity is reached12 - here it has to be noted, that the partitions

do not need to be of equal size, but can be defined by custom rules (Shaker et al. 2015). This can

be visualized by the so called BSP tree, a binary tree like in Figure 2a just with the difference, that

it operates on a 2D space like the Quadtree in 2b. So the overall idea of Figure 2 is to show, that

BSP has multiple variants to treat different dimensions and that the Quadtree would be a potential

alternative to traverse the 2D space, whereas the Octree could be used for 3D space (Shaker et al.

2015).

A B

root

A B

(a) Binary Tree

A B

D C

root

A B C D

(b) Quadtree

A B

D C

E F

G

root

A B C D EFGH

(c) Octree

Figure 2: Different Tree Types for different dimensions

9This all-encompassing view of the dungeon right from the start is the reason, why this approach is also called a
macro approach (Shaker et al. 2015).

10subsets being disjoint is the reason why no overlaps can exist in BSP - because by the definition of disjoint no piece
of space can be stored twice within the tree and can thus not be used twice

11one gamewhere BSP for graphics was used is DOOM - here David Fetter developed a project that displays this system
(see: https://www.youtube.com/watch?v=e0W65ScZmQw)

12the level of granularity may vary depending on the context - but e.g. for a dungeon rooms with the size of one pixel
would make no sense - thus breaking a given space down to that level is not necessary

8

https://www.youtube.com/watch?v=e0W65ScZmQw

Constructive Generation Methods for Dungeons

3.1.3 Dungeon Creation Algorithm

The following algorithm finally describes the generation of a dungeon level and is based on the

algorithmic descriptions of Shaker et al. (2015) andWilliams (2014) and can - with small deviations

- be seen in implemented form in Simon (2009) and Hely (2013).

Code-Lines 1-6 in Listing 1 and Images 3a to 3d

As one might asume at this position, the previously (see section 3.1.2) introduced BSP method will

be used to divide a given dungeon space into smaller subsets, that can then be filled with rooms.

The decision in which direction a section will be split can e.g. be random (Shaker et al. 2015) or be

biased by given cell-sizes (Simon 2009) - the only limiting factor in that regard isb that the resulting

subsets must still have a certain size13 (e.g. not less than either a quarter of the original width or

height).

Code-Lines 7-8 in Listing 1 and Image 3e

Once subdividing of the dungeon area is finished, the leaf nodes representing the dungeon struc-

ture have to be filled with rooms. Shaker et al. (2015), Simon (2009), and Hely (2013) propose

drawing rectangles within the partition, underlining the importance of having rooms smaller than

the partition itself and being ’in’ the partition to prevent connected rooms14. To addmore variation,

Williams (2014) proposes to only randomly place rooms in partitions or to use handmade tiles or

procedurally generated shapes as rooms instead of simple rectangles.

Code-Lines 9-10 in Listing 1 and Images 3f to 3h

To satisfy the game requirement of being playable (see Games) in a final step the rooms have to

be connected. Here random methods to connect different rooms are possible (Williams 2014) but

the BSP tree can be used again: By connecting rooms sharing the same parent node (siblings) from

the leaves to the top, all rooms will be connected and on top of that, intersections of corridors with

other corridors and rooms will be prevented (Shaker et al. 2015; Williams 2014).

1 start with the entire dungeon area // root node of the BSP tree
2 divide the area along a horizontal or vertical line
3 select one of the two new partition cells
4 if this cell is bigger than the minimal aceptable size:
5 go to step 2 // using this cell as the area to be divided
6 select the other partition cell, and go to step 4
7 for every partition cell:
8 create a room within the cell by randomly choosing two points ("top left

and bottom right") within its boundaries
9 starting from the lowest layers , draw corridors to connect rooms in the

nodes of the BSP tree with children of the same parent
10 repeat 9 until the children of the root node are connected

Listing 1: BSP Algorithm for Dungeon Generation - Source: (Shaker et al. 2015)

13this is the reason for the lack of controllability - because due to the random splits it is not clear how many of them
happen before the constraint is reached (and as splits create the spaces for rooms the room number depends on the
number of splits)

14the connection between rooms would come to pass, if in two neighboring cells the rooms would be placed exactely
on the border of those two cells

9

Constructive Generation Methods for Dungeons

Add on

Even if not represented in Listing 1, one could continue the dungeon creation by adding decorations

to the dungeon (enriching the Game Space with Game Bits) to increase both diversity and believ-

ability of the dungeon. Again the BSP tree can be used, e.g. to define thematic areas15 (Shaker

et al. 2015) or to ensure ’playable’ placement of keys16 or other elements (Williams 2014).

A

A

(a) Before Partitioning

B C

A

B C

(b) Partitioning - Step 1

B

D

E

A

B C

ED

(c) Partitioning - Step 2

F

D

E

G A

B C

EDGF

(d) Partitioning - Step 3

F

D

E

G A

B C

EDGF

(e) Adding Rooms

F

D

E

G A

B C

EDGF

(f) Adding Corridors - Step 1

F

D

E

G A

B C

EDGF

(g) Adding Corridors - Step 2

F

D

E

G A

B C

EDGF

(h) Adding Corridors - Step 3 - Completion

Figure 3: BSP Dungeon Generation Algorithm

15Shaker et al. (2015) points out due to the BSP tree hierarchy, there will typically only be one entrance to the rooms
represented by the child nodes of one non-leaf node in the tree - so for each non-leaf node a multi-room thematic area
can be created

16Williams (2014) proposes e.g. placing a key the child nodes of the node with the corresponding door

10

Constructive Generation Methods for Dungeons

3.2 Cellular Automata

After discussing the Space Partitioning method used to generate very structured and symmetric

dungeons, the next step will be to have a look at an approach capable to generate more natural

looking dungeons - the Cellular Automaton.

3.2.1 Areas of Application, Pros and Cons

This already forestalled a potential area of application as well as the first advantage of this method.

While, as has been discussed in the previous parts, the Space Partitioning method could be used

to generate dungeons that look human made, the Cellular Automaton can be useful to generate

more ’natural’/organic looking caverns (Shaker et al. 2015; Anonymous 2014; van der Linden et al.

2013). In terms of diversity and believability this can be seen as an advantage.

Shaker et al. (2015) also underline the versatility of CA (potential areas of application see: Gibson

et al. (2013, p. 12)) as well as their ability to generate infinite dungeon levels17 and this even on-

line/while the game is being played. To prove the efficiency, Johnson et al. (2010) - the CA for PCG

algorithm developers - tested it and reported the low average generation time of 4.1 · 10−1 millisec-

onds (≈ 0.06 FPS), even with a from today’s point of view slow computer with a 1.73 GHz single-core

CPU18.

Another implicitlymentioned pro-argument is the theoretically higher control with four (respectively

five) variables (see section 3.2.3) - yet this is also one of the contra arguments, as van der Linden

et al. (2013) and Shaker et al. (2015) argue, that the parameters exist, but due to interaction effects

the influence of a single one is hard to predict. This makes it difficult to adjust the game to any

specific technical or gameplay requirements other than by trial and error (Shaker et al. 2015).

Moreover van der Linden et al. (2013) and Johnson et al. (2010) are concerned that the CA method

as proposed by Johnson et al. (2010) is only viable for 2D but not 3D both for reasons of control

as well as playability. To illustrate it one can imagine a simple path in a 2D space - if it is free it is

free - yet in 3D the same 2D path could exist and yet special procedures/rules would be needed to

ensure that the path also has a ’walkable’ height to be passable (see Figure 4).

As a last issue Anonymous (2014) mentions problems with larger maps not looking very well, but

only provide indirect proof by mentioning issues with non-connected caverns in the dungeon, re-

specitively larger free areas.

For a better overview, the arguments for and against the Cellular Automata are compiled into a small

table (Table 5) like in the Space Partitioning section.

17meaning that a given player could move in every direction in a dungeon, without ever reaching an end
18yet in another section of his article he reports a generation time of 349 ms for another CA map - which today would

most likely not be seen as real time as for example gamers complain about a game being unplayble if their latency goes
over 300 ms (as a comparison), cf. I_2_i et al. (2010)

11

Constructive Generation Methods for Dungeons

Pro Contra
versatile impact of parameters often unclear

not looking generated no requirement specific adjustments
fast/low computational cost connection to gameplay is trial & error
control (4 Parameters) more control issues when in 3D

infinite dungeons possible difficulties for larger maps

Table 5: Advantages and Disadvantages of Cellular Automatons
Source: (Shaker et al. 2015; Johnson et al. 2010; van der Linden et al. 2013; Anonymous 2014)

2D/Top-Down/Look/on/Dungeon/Map Same/Dungeon/from/the/perspective/of/
standing/in/front/of/the/corridor

potential/player/character
(https://openclipart.org/detail/133477/knight)

Figure 4: 3D-Dungeon Generation Issue

3.2.2 Background Information

The idea behind the CA is not new, as the first ideas and papers in that direction where published

around 1950 by John von Neumann and Stanislaw Ulam (Wolfram 2002). Since then CA have been

used in many science areas (biology, physics, ...) (Gibson et al. 2013) leading to a large amount

of research regarding CA. So here only a short overview over the most important aspects will be

provided.

The very basic element the CAwill operate on, is a 2D grid of cells (Figure 5a) (other dimensionalities

possible but uncommon) with each of the cells being in a finite amount of states (something like

{0, 1}, {wall, path}, {gray, red}) (Shaker et al. 2015; van der Linden et al. 2013).
Another characteristic of this method is the concept of so called neighbourhoods, which refers to

the cells surrounding a chosen cell (van der Linden et al. 2013). Two common patterns are the

Moore and the von Neumann neighbourhood (more exist, e.g. for reference Tyler (1970)19):

• the Moore neighbourhood (Figure 5b) spans all cells (marked in dark red) surrounding a se-

lected cell (marked in gray) - it can even have multiple levels (second level indicated in light

red) (Shaker et al. 2015)

• the von Neumann neighbourhood (Figure 5c) only includes the cells in the north, south, west

and east of the selected cell (Shaker et al. 2015)
191970 is not the publication data of that web-page - unfortunately this date had to be used as a placeholder as the

used citation tool does not support empty areas for the year and with no year LATEX would use the website title in brackets
which looks rather bad

12

Constructive Generation Methods for Dungeons

(a) 10× 10 CA Grid

C

(b)Moore Neighbourhood

C

(c) von Neumann Neighbourhood

Figure 5: Grid and Neighbourhoods of Cellular Automata

As CA are time-discrete systems (Shaker et al. 2015), they change their state in time-steps and not

continuously (so a sequence like t0 → t1 → ... → tn exists).

The type of the state change is determined by a fixed set of rules and the given neighbourhood

and usually all cells change their state after a time step (Shaker et al. 2015; Pedersen 2014b). So

there could be the simple rule in a dungeon level, that whenever there are three cells of wall in the

neighbourhood of a cell, it will be transformed to a wall as well (or to a path if there is less than

three wall cells and the cell is a wall). The cell’s state in time tn would then be based on the sum

of wall-cells in it’s neighbourhood in tn−1 and it’s own state in tn−1 (Shaker et al. 2015).

The statechange process is visualized in Figure 6, where gray cells represent wall, the dark red cell

the currently selected cell and the lightred cells are supposed to indicate a Moore neighbourhood.

(a) Before Statechange - Condition for ChangeX (b) After Statechange - Cell changed

(c) Before Statechange - Condition for Change× (d) After Statechange - Cell not changed

Figure 6: Statechange in CA with a Moore neighbourhood of level 1

13

Constructive Generation Methods for Dungeons

3.2.3 Dungeon Creation Algorithm

The preceeding section already introduced a lot concepts that make up the Cellular Automaton

Dungeon Creation Algorithm, as it is proposed by Johnson et al. (2010). So this section will focus

on the topics not yet discussed, that are needed to successfully generate a dungeon.

At first that will concern the parameter- and rule-set that is used to steer the CA. Table 6 introduces

the shortcuts, a short description and proposed values:

Variable Description Example
r initial percentage of rock cells 0.5 (50%)
n CA iterations 2
T neighbourhood value20threshold that defines a rock 5
M Moore neighbourhood size 1

Table 6: Cellular Automata Steering Variables - Source: Johnson et al. (2010)

Given the knowledge of the previous section a fifth variable - the type of the neighbourhood - could

be discussed, but is neglected for the current approach.

The only rule Johnson et al. (2010) use is close to the one used e.g. in Figure 6:

• T = 5 with the meaning, that if in the neighbourhood of a cell there is five rock cells it is

converted to rock - elsewise it will be converted to a floor cell

Codelines 1-8 in Listing 2

In the first half of the algorithm should not be too many surprises, as it in large parts resembles the

general work pattern of a CA discussed in the previous part - it starts with the initilzation of the grid

in a certain size and the conversion of r (or here 50%) of the cells to rock with uniformly distributed

random numbers. Afterwards the automaton runs n = 2 times, calculating the neighbourhood

value and converting cells depending on the value being bigger or smaller T = 5.

Codelines 9-10 in Listing 2

To ensure that a player can continuously play it is important, that once he reaches the end of a grid

he can directly advance to the next. This is achieved by not only generating the so called base grid

(codelines 1-8), but also generating the adjacent grids of it in the same step (Johnson et al. 2010).

Again it can be discussed how the neighbourhood is defined, as Johnson et al. (2010) for adjacent

grids proposes a von Neumann neighbourhood, Shaker et al. (2015) a Moore neighbourhood.

So basically the code steps 1-8 are then applied to the neighbouring 4 respectively 8 grids to set

up the dungeon structure there as well (Johnson et al. 2010). In a somewhat reduced21 version this

procedure will be run repeatedly throughout the game, as every time the player enters a new grid,

its neighbours have to be generated (Johnson et al. 2010).

20the neighbourhood value is the number of rock cells in a given neighbourhood, so e.g. in a Moore Level 1 neighbour-
hood this value will lie between 0 and 9

21reduced as depending on the neighbourhood not each neighbour will have to be generated as some already exist

14

Constructive Generation Methods for Dungeons

Codelines 11-12 in Listing 2

After this step is completed, there is five respectively nine dungeon-grids, yet it is not sure that

those are connected (Johnson et al. 2010). If no connection can be found, Johnson et al. (2010)

propose to establish it by picking the two floor cells closest to the border of two grids and digging

a tunnel between them. This ensures the overall playability of a level (see Games).

Codelines 13-14 in Listing 2

Upon completion of the previous steps theoretically a playable dungeon would be available to the

player. However, as the each grid was generated by a separate CA run and tunnels were dug in

a straight line, the believability may have suffered, as the dungeon may be rather inconsistent in

design (Johnson et al. 2010). The proposed solution are another n CA runs on the whole dungeon

(all five/nine grids) to remove the given flaws (Johnson et al. 2010).

Codeline 15 in Listing 2

This last step in the algorithm is necessary to ensure that a player can actually return to a location in

a dungeon and will encounter the same ’setting’, as has been there before (Johnson et al. 2010). To

achieve this, an implemention of the algorithmwill have to store the seed for the base grid including

pointers to neighbouring grids (Johnson et al. 2010) (which then will be in need to be updated on

expansion of the dungeon due to player exploration).

Add on in Listing 3

Having used a CA to create a mobile app, Pedersen (2014b) observed a problem that Johnson et al.

(2010) do not adress in their paper explictetly: within a grid the CA might generate lots of different

caverns, which are not necessarily connected.

This is why he proposes to use the illustrated flood fill algorithm to identify the different caverns

(Pedersen 2014b). The first lines of the code (1-5) are used to traverse the whole grid, meaning that

each cell that is a path cell and not already ’filled’ with a fillNumber, will be the starting point of
a new cavern with a new fillNumber.
For this new cavern a floodFill(fillNumber)-operation is called, that will set a cell to a given
fillNumber whenever it is no rock and recursively invoke itself for all it’s neighbouring cells (here
a von Neumann neighbourhood was chosen)22. At a certain point the recursion will stop, as it will

only hit cells that are either filled or rock cells - then control goes back to the steering function

described in codelines 1-5. To not overwrite the grid, the flood fill will be done with a copy of the

original grid structure (Pedersen 2014b).

Having identified the caverns Pedersen (2014b) considers two ideas worth implementing:

• filling all but the largest cavern to keep the natural dungeon look, but with the issue of loosing

playable area23

• connecting the caverns with the downside of having straight tunnels between caverns24

22an animation illustrating the process can be found at http://cdn3.raywenderlich.com/wp-content/uploads/
2014/02/Flood-Fill.gif

23Anonymous (2014) chose a comparable flood fill approach and to solve the problem of loosing area the dungeon
was recreated when the remaining path/floor area was below a certain threshold like 45% of the dungeon

24whereas when integrated into Johnson’s algorithm depending on its placement the new tunnels would also be sub-
ject to a rerun of the CA like the tunnels between grids, which would solve this problem

15

http://cdn3.raywenderlich.com/wp-content/uploads/2014/02/Flood-Fill.gif
http://cdn3.raywenderlich.com/wp-content/uploads/2014/02/Flood-Fill.gif

Constructive Generation Methods for Dungeons

1 initialize empty grid with a x b cells // e.g. 50 x 50
2 initialize floor cells
3 convert randomly with probability r
4 for n iterations
5 go through each cell
6 calculate neighbourhood values
7 if past threshold T
8 convert
9 create adjacent grids // for square cells that will be 4 or 8

10 for each repeat steps 1-8
11 if two adjacent grids are not connected
12 create a connection // between two accessible areas
13 run n additional CA iterations // removing inconsistencies
14 create wall cells // special rock cells
15 store base grid and pointer to adjacent grids // allows restoring the grid

Listing 2: CA Algorithm for Dungeon Generation - Source: (Johnson et al. 2010)

1 // Function to iterate through all cells
2 for each cell
3 if not already filled and a path cell
4 floodFill(fillNumber)
5 increase fillNumber
6
7 // floodFill -Function to fill a cavern with a number to identify it
8 if cell is not of type floor/path
9 return

10 set cell to fillNumber
11 go recursively through neighbour cells
12 floodFill(fillNumber) for northern cell
13 floodFill(fillNumber) for eastern cell
14 floodFill(fillNumber) for southern cell
15 floodFill(fillNumber) for western cell

Listing 3: CA Flood Fill Cavern Identification - Source: (Pedersen 2014b)

Figure 7: CA Dungeon
Source: (Johnson et al. 2010)

original: iteration 1: 2: 3: 4:
 # ### ## #### ########## #### ########## #### ########## #### ##########
#######
 # # ## #### # # # # #### # ## ###### ## ###### ## ######
 # # # # ## # ### # ### # ## ##### ## ##### ## #####
######
 # # ## ##### ## ### #### # ## ##### ## ######## ## ########
#########
#########
#########
#########
 ## ## #### # # ##### ####### #### ######## #### ######## #### ########
#######
 # ## ## # ##### # ###### # ###### # ######
 # # # #### ##### # ###### # ###### # ######
#######
################

Figure 8: CA Dungeon Creation Process Schema
Source: (Anonymous 2014)

16

Constructive Generation Methods for Dungeons

3.3 Evolving Cellular Automata

The Evolving Cellular Automata as recently proposed by Pech et al. (2015) uses Genetic Algorithms

(GA) to improve CA for dungeon/maze generation.

3.3.1 Areas of Application, Pros and Cons

The area of application and most of the Pros and Cons are basically equal to those discussed for

the Cellular Automata. This is the case, as this approach again uses a CA to generate dungeons

(Pech et al. 2015), which naturally will enjoy the same benefits like other CA, including the organic

and ’realistic’ look, as well as being fast and easy to compute at the same time.

As already indicated above, the major difference in terms of advantages is, that the Evolving CA

(ECA) does not suffer from the difficulties of manual rule creation, but uses a GA to evolve the rules

automatically (Pech et al. 2015). For completeness it should bementioned, that Genetic Algorithms

themselves are an option to generate dungeons25 and are combined with CA, as they generate

proper levels but lack real-time capability, taking up to 20 minutes per dungeon (Pech et al. 2015).

Yet even this algorithm has downsides when used: As it will use pre-generated mazes/dungeons26

and versions that have been modified by a CA (see Dungeon Creation Algorithm) to evaluate the CA

(ruleset), it depends on a reasonable selection of attributes to judge whether twomazes/dungeons

have a comparable style (Pech et al. 2015).

Pro Contra

advantages of a normal CA
difficult to specify attributes capturing

visual style
no difficult manual rule creation

Table 7: Advantages and Disadvantages of Evolving Cellular Automata
Source: (Pech et al. 2015)

3.3.2 Overview over Genetic Algorithms

As GA are not covered in more detail in this thesis, this part shall provide a brief overview (more de-

tailed introductions covering more variations e.g. in deWeck andWilcox (2010) andWeise (2009)).

The GA as a subclass of the evolutionary algorithms (Weise 2009) try to computionally simulate

the natural/biological genetic evolution. To do this, the basic unit is the so called chromosome or

gene, which typically is a fixed-/variable-length tuple (Weise 2009) of integers, characters or even

colors (de Weck and Wilcox 2010)27 (examples, e.g. Fig. 9a). A number of these chromosomes, the

so called population, is then evaluated by a fitness function, which is important to the GA (deWeck

and Wilcox 2010) as it evaluates the quality of a gene for a certain aim28.

25one example for this is described by Ashlock et al. (2011)
26Pech et al. (2015) created the algorithm for maze generation - yet visually the generated mazes equal dungeons and

the authors themselves mention dungeon environments in their introduction
27as a complement to chromosomes so called phenotypes exist, which are what the chromosome represents - so as a

rough example a 2D grid can be the chromosome of a dungeon
28in a dungeon could be number of rooms, percentage of accessible area, ...

17

Constructive Generation Methods for Dungeons

The resulting numeric value can then be used to select a number of most fit genes/individuals to

be reused/move on to a new generation (de Weck and Wilcox 2010). Furthermore the selected or

additionally selected candidates29 can be used to replace less fit individuals in two steps:

• crossover: two selected genes are split and exchanged to form two new genes (Fig. 9a)

• mutation: a certain number of bits/elements in a gene are randomly changed (Fig. 9b)

The above mentioned steps are repeated until the number of selected and/or the newly generated

individuals is sufficient to replace the prev. population (deWeck andWilcox 2010; Pech et al. 2015).

Then again, the new population will be evaluated and it will be checked if the resulting Fitness

values are sufficient to terminate the algorithm (or if other criteria like a certain number of iterations

are met) (Pech et al. 2015). Otherwise another iteration will be carried out.

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

(a) Crossover

1 0

0 0

1 0

1 1

1 0

0 1

0 1

0 0

0 1

1 1

(b)Mutation

Figure 9: GA Offspring Creation
Source:(Weise 2009)

mating selection

initialization and evaluation

mutation

replacement

test for termination

crossover

Figure 10: GA Algorithm Schema
Source: (de Weck and Wilcox 2010; Preuß 2015)

3.3.3 Dungeon Creation Algorithm

While the regular CA typically starts from a ’blank page’ with randomly distributed rock cells, the

Evolving CA use pre-generated maps as an input (Pech et al. 2015). To capture the visual charac-

teristics nine attributes (see Table 9) are used, also illustrated in Figure 11 to clarify some terms30

(potentially some attributes would need to be changed to apply the method for dungeons).

Moreover the CA is steered slightly different for the ECA, as it does not use the four variables r, n,

T ,M . It instead uses the following variables:

Variable Description
S number of cell states
N size of the neighbourhood used for the CA

Table 8: Attributes for the Cellular Automata of the ECA - Source: (Pech et al. 2015)

29e.g. Tournament selection, where two or more members of a population are randomly chosen, compared and only
the stronger one will move on to the crossover/mutation stage (de Weck and Wilcox 2010; Miller and Goldberg 1995)

30here it should be noted, that traversable areas are not marked in the picture - yet one traversable area is displayed
by all accessible tiles (another traversable area would look similar but would not be connected)

18

Constructive Generation Methods for Dungeons

Number of traversable
areas.

Size of traversable
areas.

Avg. size of all
traversable areas.

Number of
passageways.

Avg. length of
passageways.

Number of rooms.

Avg. size of rooms.
Number of
cul-de-sacs.

Number of dead-ends.

Table 9: Attributes for ECA
Source: (Pech et al. 2015)

passageway

junction

cul-de-sac
dead-end

room

Figure 11: Illustration to clarify ECA Attributes
Source: (Pech et al. 2015)

Aswith the lack of the former thresholdT the Cellular Automatonwould lack a transformation rule, a

new ruleset is introduced for the ECA. This ruleset does not have a fixed number like T to determine

how a neighbourhood value is handled, but uses a rule table, that based on a given neighbourhood

value is used to decide, how a cell should be transformed (Pech et al. 2015) (these rule tables also

make up the genes or chromosomes that will be manipulated by the GA).

Pech et al. (2015) distinguish two types of rule tables or, as they call it - representations - differing

in the following aspects (more explanations: Pech (2013) / representations: Ashlock et al. (2011)):

Direct Representation Indirect Representation

Application Case simple Cellular Automata, max. two
cell states

more complex CA

Output States for each possible CA neighbourhood
configuration

for every possible sum of
neighbourhood values

Output State
Representation list of integers in lexicographic order list of integers

Neighbourhood
Configurations SN 31 (S − 1) ·N + 1

Table 10: Comparison of the different representation types for ECA - Source: (Pech et al. 2015)

How the cell transformation is handled can be best shown graphically in a simple 1D CA:

Neighbourhood

Neighbourhood-Index
�� ∗�+�� ∗�+�� ∗�= �

NewBCellBState

Indices 0 1 2 3 4 5 6 7

OutputBStates 1 1 0 1 0 1 1 1

Before 0 1 1 1 0 1 1 0 0

After 0 1 1 1 1 1 1 0 0

(a) Direct

Indices 0 1 2 3 4 5 6 7 8 9

Output States 2 3 0 2 1 2 1 1 3 0

Before 0 3 2 3 0 2 2 1 1

After 0 3 2 3 2 2 2 1 1

Neighbourhood

Neighbourhood-Sum
3 + 0 + 2 = 5

New Cell State

(b) Indirect

Figure 12: Representations/Rule Tables for the CA in ECA - Source: (Pech et al. 2015)

31neighbourhood size 1, two cell states: N = 3 and SN = 23 = 8 (1D CA); SN = 2(3×3) (2D CA) (Pech 2013)

19

Constructive Generation Methods for Dungeons

Having discussed these basic elements of the ECA, the algorithm itself can now be discussed:

Codeline 1 in Listing 4

The whole procedure starts off with the initialization of the rule tables respecitively chromosomes,

each cell being set to a random value in [0, S− 1] (for the generation of dungeons two states - path

and rock - can already be enough) (Pech et al. 2015).

Codeline 2-5 in Listing 4

After the rule tables have been initialized, the evaluation starts by applying the associated CA to a

collection (e.g. 100) of mazes/dungeons that have been generated before as a needed input for the

CA32 (Pech et al. 2015). In a next step Pech et al. (2015) use a series of image process techniques

to obtain the nine Attributes for ECA without specifying the exact method33.

Using the extracted attributes, for each generated layout an attribute similarity measure (ASM)34 is

calculated and finally for each individual/ruleset a fitness value FV is calculated (average of ASMs

for each individual):

ASM =
∑9

i=1

(
1.0− |dai−aai|

mai

)3
× awi FV = 1

#layouts

∑#layouts
j=1 ASMj

Codelines 6-9 in Listing 4

In the next part of the ECA algorithm a new population has to be generated, where the overall pro-

cedure mostly follows the one described in the Overview over Genetic Algorithms.

As a first step, the five individualswith thehighest FV are transferred to thenext generation via elitist

selection; the remaining 45 candidates for the new generation are found via tournament selection

between five individuals and follow-up crossover and mutation (Pech et al. 2015). In difference to

what is described for the general GA, crossover is only applied with a certain likelihood (e.g. 60%),

which means that for every chromosome a random number generator draws a number in [0, 1] and

if it is smaller than the likelihood, crossover takes place (after an additional chromosome is added

as two are needed for crossover) (Pech 2013; Pech et al. 2015).

The final step is themutation of the chromosome (or after crossover: the two chromosomes), where

each cell is changed with the probability of 1
chromosome length (using uniformmutation)35 (Pech 2013).

Codelines 10-12 in Listing 4

Having created the new population, the algorithm must check, whether one of the following ter-

mination criteria is met or whether the CA evaluation and the population generation have to be

repeated to further improve the solution (Pech et al. 2015):

• Convergence: last 100 consecutive runs did not increase FV by more than 0.0001

• max. FV: FV has reached its maximum of 1.0 and cannot be further improved

• # Generations: the other conditions are not met, but 5000 runs have been executed

32remember the standard CA that also needs a non-empty initial map-configuration, see section 3.2.2
33a rather precise overview over the techniques like erosion or region growing can be found in Pech (2013)
34da=desired attribute value // aa=attribute extracted value //ma=max. possible value // aw =attributeweighting

factor→more information on each variable in Pech (2013)
35Pech (2013) and Pech et al. (2015) argue that they took most of the parameters for the GA from De Jong (1975) except

the mutation parameter which they adapted to better fit the potentially varying chromosome lengths

20

Constructive Generation Methods for Dungeons

1 initialize population // random value between [0,S-1]; S = #cell states
2 evaluate CA ruleset
3 run CA with collection of perfect mazes/dungeons
4 extract attributes from generated layouts using image process techniques
5 evaluate extracted attributes based on set of goal attributes
6 repeat until new population is created
7 select // elitist top 5 (only first step) + tournament selection
8 crossover // single -point variant
9 mutate // using uniform mutation

10 check if termination conditions are met
11 yes - solution is found
12 no - go to line 2 and continue search

Listing 4: Evolving CA Algorithm for Dungeon Generation - Source: (Pech et al. 2015)

21

Constructive Generation Methods for Dungeons

3.4 Generative Grammars

While the previous approaches mostly focussed on generating dungeon maps with certain qual-

ities like room count, or a natural look, the Generative Grammar has the intention to allow map-

generation based on the gameplay respectively story (idea introducedbyDormans (2010) and taken

up by van der Linden (2013)).

3.4.1 Areas of Application, Pros and Cons

In addition to the above mentioned general idea of Generative Grammars, this approach is also

meant to improve the ease of use for designers (controllability, see Procedural Content Generation

(for Games)) by allowing them to express the dungeon layout in a more high-level design-oriented

way (Dormans 2010; van der Linden 2013), instead of more or less ’cryptic’ variables as for Cellular

Automata or Space Partitioning. Similar towhat Pech et al. (2015) proposed for the CA, Dormans and

Bakkes (2011) point out, that generative grammars can also bemodified by evolutionary algorithms.

Another PCG property that is satisfied by this approach, is Speed, as Dormans (2010) and van der

Linden (2013) both characterize it as performant. Dormans and Bakkes (2011) even propose to

use player modelling in combination with generative grammars to adjust the dungeon at play time

(space, mission, difficulty, ...).

A last advantage, the syntactic correctness, is a side effect of using grammars and according to

Dormans and Bakkes (2011) makes correctness tests and selection processes unnecessary.

One downside of using grammars is, that (at least at the moment)36 grammars are still game-

dependent, whichmeans that two games require twodifferent grammars (Dormans 2010). Dormans

and Bakkes (2011) also restrict the idea that grammarsmake dungeon-generation easier for design-

ers, as they figured out, that the knowledge of generative grammars is often not common among

designers. This and the difficulties to foresee the final outcome (Dormans and Bakkes 2011) may

lead to what Dormans (2010) calls maps having a ’random feel’ and ’lack[ing] overall structure’.

Pro Contra
map-structure and mission related game-dependent
easier to use (high-level ’language’) designers lack knowledge

modifiable with evolutionary algorithms difficult to estimate outcome
fast and adjustable to player random/unstructured feel of maps
syntactical correctness

Table 11: Advantages and Disadvantages of Generative Grammars
Source: (Dormans 2010; Dormans and Bakkes 2011; van der Linden 2013)

3.4.2 Overview over Grammar Types

Like for the previous algorithms, it makes sense to get an overview over the underlying ideas - in

this case three different types of grammars, that in combination are used to create a dungeonmap.

36van der Linden et al. (2013) have worked towards a more generic approach, where only the translator form grammar
to real content is still game-dependent)

22

Constructive Generation Methods for Dungeons

Generative Grammar (Fig. 13a)

This type can be seen as the ’basic’ grammar, which is the basis for the other two types and is

derived from linguistics, where among others Chomsky laid the foundation for generative grammars

as constructs to produce all correct phrases of a language, based on an alphabet (symbols) and a

set of rules (transformation of symbols to other symbols) (Dormans 2010; Hamp 2015; Pavle 2015).

From there it was carried over to Computer Science as the basis for code parsers (Dormans 2010)

and is formally defined as a 4-tuple ⟨V,Σ, S, P ⟩ (also called Backus-Naur-Form37) (Adams 2002):

• V : is a finite alphabet, called variables/nonterminal symbols

• Σ: finite alphabet, called terminal symbols with V ∩ Σ = ∅

• S ∈ V as the start symbol

• P as production rules of ordered pairs ⟨α, β⟩withα, β ∈ (V ∪ Σ)∗ andα containingmin. one

symbol from V

To work with this, one starts to replace the start symbol S with one rule from the BNF, e.g. S → e
C G bm g and than continues, till all non-terminal symbols V are replaced with terminal symbols

Σ, e.g. e t km km km km lm bl g38. Combining the above mentioned ideas, it becomes clear
that if words and rules are correctly given in some type of BNF, a computer cannot only analyse the

language, but also use the given BNF to generate language, respectively missions/stories in case

of dungeon generation (Dormans 2010).

Graph Grammars (Fig. 13b)

Graph Grammars build on the principles of Generative Grammars and thus are very similar to them,

with the difference, that no strings are handled, but graphs with nodes and edges (Dormans 2010).

Graph Grammars are used to build dungeons, as they provide more flexibility in rewriting things

(see replacement for G in Fig. 13a and Fig. 13b) and as a result are considered to be more suitable
to create desirable outcomes (Adams 2002).

Shape Grammars (Fig. 13c)

Shape Grammars, originating from work of Stiny and Gips (1972), build on the concepts of Gener-

ative and Graph Grammars, but instead of strings and nodes they use 2D shapes (Dormans 2010).

The used shapes can represent any type of 2D layout element, like the walls and spaces in Fig. 13c

or the test, key and lock rooms on page 6 of Adventures in Level Design by Dormans (2010). Like

Graph and Generative Grammars, Shape Grammars work based on rewriting, so e.g. in Fig. 13c

every connector could be replaced with one of the given rules to create a larger spatial structure.

�
� [entrance], �� [level-boss], �� [multi-part Key],
�� [lock for multi-part key], � [test], � [goal]

� � [start], � [chain], � [gate], �� [chain linear]

� � [chain]

�
� ∷= � � � �� �
� ∷= �� � || �� ∷= �
� ∷= �� �� �� ��

(a) Generative Grammar

37not called that way by Adams (2002), but the given notation resembles the BNF described e.g. in Vahrenhold (2013)
38intermediate steps: e C G bl g → e CL t G bl g → e t t G bl g → e t t km km km lm bl g

23

Constructive Generation Methods for Dungeons

Alphabet Rules

C S

G CL

e bl

km lm

t g

1:S 1:e 4:bl 5:g

1:C

3:G

1:G

3:km

4:km

5:km

6:km

2:C

2:C

2:t1:CL 1:CL 2:t

(b) Graph Grammar

Alphabet Rules

C

connector

space

wall

C

C C

C

C

C

(c) Shape Grammar

Figure 13: Different Grammar Types Overview - Source: (Dormans 2010)

3.4.3 Dungeon Creation Algorithm

The algorithm discussed in this subsection is primarily derived from Dormans (2010) and Dormans

and Bakkes (2011), but also incorporates some elements of the approach of van der Linden (2013)

and Adams (2002). Basis for this decision was the fact, that only Dormans (2010) and Dormans and

Bakkes (2011) do not work towards any kind of implementation and thus focus on the description

of the algorithm and necessary background information.

1 define symbols and vocabulary
2 define relationships and constraints
3 transform to graph grammar
4 define shape grammar
5 create min. one shape for each terminal graph node
6 build mission with graph grammar
7 build space/layout with shape grammar
8 for each mission element
9 find suitable shape element

10 place at random , suitable location
11 save reference to mission element
12 compute player model // optional
13 adapt mission/space/difficulty based on player model // optional

Listing 5: Generative Grammar Algorithm for Dungeon Generation

Source: (Dormans 2010; Dormans and Bakkes 2011; van der Linden 2013)

Codelines 1-2 in Listing 5

Right at the beginning, the dungeon designer must identify the basic elements of the dungeon

story (and through this step also for the layout). This, in an easy case, comes down to set up a

basic generative grammar as in Figure 13a, specifying the core elements, like in a dungeon case

rooms, boss-enemies, keys etc. and on top of that basic relations, like a dungeon having rooms,

rooms containing enemies and keys.

24

Constructive Generation Methods for Dungeons

Codelines 3-5 in Listing 5

Based on the generated vocabulary and basic rules, a GraphGrammar is created as the basis for the

story generation (Dormans 2010). Again, the reason basically is the greater flexibility compared to

Generative Grammars, allowing non-linearity andmore randomness (Adams 2002; Dormans 2010).

As the Graph Grammar will only be the ’intermediate’ step to generate the dungeon level, Dormans

(2010) creates at least one shape for each terminal node in the Graph Grammar to enable the trans-

lation from mission to space. Multiple ones would also be possible, then one element would ran-

domly be selected (Dormans 2010), creating greater diversity.

Codeline 6 in Listing 5

Before or also after the creation of the Shape Grammar, the specified Graph Grammar is used to

generate the underlying story (Dormans 2010). This, as indicated in Overview over Grammar Types,

works by replacing the start node (in Fig. 13b 1:S) with what is specified in the ruleset. When all
non-terminal nodes are replaced with terminal ones (so based on the example in Fig. 13b only grey

circles would remain) a mission is created (Dormans 2010). Here it has to be noted that Fig. 13b

only represents a very limited example, as typically multiple replacement rules for a non-terminal

symbol will exist, to ensure diversity.

Codelines 7-11 in Listing 5

Given the mission in Graph Grammar, the dungeon structure will be created by iterating through

the (terminal) nodes of the graph, placing a suitable shape into the map for each node (Dormans

2010). Diversity is ensured by randomly selecting the shape from multiple fitting ones and can be

increased by using dynamic parameters to influence choice, e.g. to select more complex/difficult

shapes in the final parts of the dungeon (Dormans 2010). Keeping references to the mission graph

is a guarantee that e.g. a key containing shape will be placed before a gate shape (Dormans 2010).

Codelines 12-13 in Listing 5

Dormans and Bakkes (2011) propose not to stop the algorithm/generation process once a dungeon

is generated, but to make use of the speed of the method to continuously modify the map. Based

on an analysis of the actions and preferences of players, they propose to alter shape grammars or

the mission graph dynamically, or to use terminal graph nodes representing different difficulty lev-

els. To bring some of those elements into a given dungeon, Dormans and Bakkes (2011) introduce

special non-terminal mission nodes (e.g. ?) that are not replaced in the initial map generation,

but can be filled up during a game in the dungeon.

Differences in the van der Linden (2013) approach to the one of Dormans (2010)

van der Linden (2013) takes a slightly different approach by using the software Entika to define

objects and their relations already including parameters and semantics39. Instead of the general

Generative Grammar he uses a so called Gameplay Grammar, defining action and subactions (e.g.

Acquire key ::= Kill Enemy → Loot key). This is later translated to an initial graph with
all top-level actions, which are than iteratively replaced with subactions. Based spatial proximity

they are grouped together, before applying several optimization steps to the resulting graph to get

a representation that an exisiting map generator for the target game Dwarf’s Quest can work with.

39e.g. a player could have a certain level - based on that finding a key could either include fighting monsters or just
searching different treasure chests (van der Linden 2013); more about semantics and Entika in (Kessing et al. 2012)

25

Constructive Generation Methods for Dungeons

4 Limitations and Conclusion

Any reader who made it through the previous sections should now have a good overview over a

quite diverse set of dungeon creation algorithms. At the same time, he/she most likely will have

noticed the often very brief and abstract style in which the algorithms are presented. While this is

inevitable for a seminar thesis due to length restrictions, it still represents a first limitation, as a

more complete understanding of each of these algorithms will require further reading. The given

references constitute a good starting point to gain deeper insights wherever required or desired.

Moreover not only the description of individual algorithms is limited - the sameholds true for the se-

lection of algorithms presented in this thesis. Only three categories of dungeon creation algorithms

made it into this thesis (plus one variation of a category), while a multitude of other approaches is

not discussed. Examples include:

• Agent-based dungeon growing (Shaker et al. 2015)

• Relative Placement (Valtchanov and Brown 2012)

• Genetic Algorithms (e.g. Hartsook et al. (2011))

• Constraint-Based (Roden and Parberry 2004)

And this again limits the overall view on dungeon generation, as it up to this part only considers

the scientific point of view. Considering that PCG research strives for practical applicability, ex-

isting practical work can also be a valuable source for information, especially for anyone aiming

at implementing a PCG dungeon game himself. Some examples cited in this thesis would include

Hely (2013) with a tutorial for BSP trees, Simon (2009) with his 7 Year Roguelike project or Pedersen

(2014b) with his tutorial on CA.

This thesis has three major contributions: The first one is supposed to be an easy introduction

into the concept of PCG and existing constructive generation methods for dungeons. This includes

a clarification of the basics of PCG, content, games and dungeons as well as simple descriptions

for four algorithms, supported by pseudo-code snippets and illustrating graphics. The explanation

of used techniques, as e.g. BSP trees for space partitioning, before explaining their usage in the

creation algorithm, shall provide peoplewith nobackground in Computer Sciene or related faculties

with the necessary toolbox to understand the more specific dungeon creation algorithms.

A second contribution is the provision of information on algorithm application cases, advantages

and disadvantages, allowing the reader to quickly compare the explained algorithms in order to

find the right one for a given scenario.

The provision of a vast set of references and additional literature is the last contribution of this

thesis, enabling the reader to continue learning about algorithmic dungeon creation approaches.

Here the ’PCG Book’ by Togelius et al. (2015b) would be suitable for newcomers to the PCG domain,

whereas the cited conference proceedings and papers are rather recommended for more experi-

enced readers.

26

Constructive Generation Methods for Dungeons

References

ACM (2015). ACM Transactions on Multimedia Computing, Communications and Applications. url:

http://tomm.acm.org/ (visited on 04/16/2015).
Adams, David (2002). “Automatic Generation of Dungeons for Computer Games”. PhD thesis, p. 60.

url: http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/archive/
ug2002/pdf/u9da.pdf.

Anonymous (2014). Cellular Automata Method for Generating Random Cave-Like Levels. url: http:
//www.roguebasin.com/index.php?title=Cellular_Automata_Method_for_Genera
ting_Random_Cave-Like_Levels (visited on 04/23/2015).

Artoftransformation (2008). Dungeon Rogue. url: http : / / en . wikipedia . org / wiki / File :
Rogue_Unix_Screenshot_CAR.PNG (visited on 05/07/2015).

Ashlock, Daniel, Colin Lee, and CameronMcGuinness (2011). “Search-based procedural generation

of maze-like levels”. In: IEEE Transactions on Computational Intelligence and AI in Games. Vol. 3.

3, pp. 260–273. isbn: 1943-068X VO - 3. doi: 10.1109/TCIAIG.2011.2138707.
BITKOM (2014). Anteil der Computer- und Videospieler in Deutschland in den Jahren 2013 und 2014

nach Geschlecht. url: http://de.statista.com/statistik/daten/studie/315920/um
frage/anteil- der- computerspieler- in- deutschland- nach- geschlecht/ (visited on
04/21/2015).

Bidarra, Rafael et al. (2010). Workshop on Procedural Content Generation in Games. url: http :
//pcgames.fdg2010.org/ (visited on 04/07/2015).

BoardGameGeek. Dungeon! url: http://boardgamegeek.com/boardgame/1339/dungeon (vis-
ited on 04/17/2015).

Browne, C. and F. Maire (2010). “Evolutionary Game Design”. In: IEEE Transactions on Computa-

tional Intelligence and AI in Games 2.1, pp. 1–16. issn: 1943-068X. doi: 10.1109/TCIAIG.2010.
2041928. url: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=5404867.

De Jong, Kenneth Alan (1975). An analysis of the behavior of a class of genetic adaptive systems.

doi: MicrofilmsNumber76-9381.
De Weck, Olivier and Karen Wilcox (2010). A Basic Introduction to Genetic Algorithms. url: http:

//ocw.mit.edu/courses/engineering-systems-division/esd-77-multidisciplinary-
system-design-optimization-spring-2010/lecture-notes/MITESD_77S10_lec11.
pdf.

Dormans, Joris (2010). “Adventures in level design: generating missions and spaces for action ad-

venture games”. In: Workshop on Procedural Content Generation in Games. ACM, pp. 1–8. isbn:

9781450300230. doi: 10.1145/1814256.1814257. url: http://portal.acm.org/citation.
cfm?id=1814257\backslashnhttp://dl.acm.org/citation.cfm?id=1814257.

Dormans, Joris and Sander Bakkes (2011). “Generating missions and spaces for adaptable play

experiences”. In: IEEE Transactions on Computational Intelligence and AI in Games. Vol. 3. 3,

pp. 216–228. isbn: 1943-068X VO - 3. doi: 10.1109/TCIAIG.2011.2149523.

27

http://tomm.acm.org/
http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/archive/ug2002/pdf/u9da.pdf
http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/archive/ug2002/pdf/u9da.pdf
http://www.roguebasin.com/index.php?title=Cellular_Automata_Method_for_Generating_Random_Cave-Like_Levels
http://www.roguebasin.com/index.php?title=Cellular_Automata_Method_for_Generating_Random_Cave-Like_Levels
http://www.roguebasin.com/index.php?title=Cellular_Automata_Method_for_Generating_Random_Cave-Like_Levels
http://en.wikipedia.org/wiki/File:Rogue_Unix_Screenshot_CAR.PNG
http://en.wikipedia.org/wiki/File:Rogue_Unix_Screenshot_CAR.PNG
http://dx.doi.org/10.1109/TCIAIG.2011.2138707
http://de.statista.com/statistik/daten/studie/315920/umfrage/anteil-der-computerspieler-in-deutschland-nach-geschlecht/
http://de.statista.com/statistik/daten/studie/315920/umfrage/anteil-der-computerspieler-in-deutschland-nach-geschlecht/
http://pcgames.fdg2010.org/
http://pcgames.fdg2010.org/
http://boardgamegeek.com/boardgame/1339/dungeon
http://dx.doi.org/10.1109/TCIAIG.2010.2041928
http://dx.doi.org/10.1109/TCIAIG.2010.2041928
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=5404867
http://dx.doi.org/Microfilms Number 76-9381
http://ocw.mit.edu/courses/engineering-systems-division/esd-77-multidisciplinary-system-design-optimization-spring-2010/lecture-notes/MITESD_77S10_lec11.pdf
http://ocw.mit.edu/courses/engineering-systems-division/esd-77-multidisciplinary-system-design-optimization-spring-2010/lecture-notes/MITESD_77S10_lec11.pdf
http://ocw.mit.edu/courses/engineering-systems-division/esd-77-multidisciplinary-system-design-optimization-spring-2010/lecture-notes/MITESD_77S10_lec11.pdf
http://ocw.mit.edu/courses/engineering-systems-division/esd-77-multidisciplinary-system-design-optimization-spring-2010/lecture-notes/MITESD_77S10_lec11.pdf
http://dx.doi.org/10.1145/1814256.1814257
http://portal.acm.org/citation.cfm?id=1814257\backslashnhttp://dl.acm.org/citation.cfm?id=1814257
http://portal.acm.org/citation.cfm?id=1814257\backslashnhttp://dl.acm.org/citation.cfm?id=1814257
http://dx.doi.org/10.1109/TCIAIG.2011.2149523

Constructive Generation Methods for Dungeons

Fuchs, Henry, Zvi M. Kedem, and Bruce F. Naylor (1980). “On Visible Surface Generation by A Priori

Tree Structures”. In: ACM Siggraph Computer Graphics 14.3, pp. 124–133. issn: 00978930. doi:

10.1145/965105.807481. url: http://portal.acm.org/citation.cfm?id=807481.
Gamasutra (2012). Procedural Content Generation: Thinking With Modules. url: http://www.gama

sutra.com/view/feature/174311/procedural_content_generation_.php (visited on
04/17/2015).

Gaudi, Antoni. Antoni Gaudi. url: http://www.brainyquote.com/quotes/quotes/a/antonigau
d534341.html (visited on 04/22/2015).

Gibson, Mike J., Ed C. Keedwell, and Dragan Savi� (2013). “Understanding the efficient paralleli-

sation of cellular automata on CPU and GPGPU hardware”. In: Proceeding of the fifteenth an-

nual conference companion on Genetic and evolutionary computation conference companion -

GECCO ’13 Companion 77, p. 171. issn: 07437315. doi: 10.1145/2464576.2464660. url: http:
//dl.acm.org/citation.cfm?doid=2464576.2464660.

Hamp, Eric P. (2015). Linguistics. url: http://www.britannica.com/EBchecked/topic/342418/
linguistics/35131/Computational-linguistics (visited on 05/05/2015).

Hartsook, Ken et al. (2011). “Toward supporting stories with procedurally generated game worlds”.

In: 2011 IEEE Conference on Computational Intelligence and Games, CIG 2011, pp. 297–304. isbn:

9781457700095. doi: 10.1109/CIG.2011.6032020.
Hely, Timothy (2013). How to Use BSP Trees to Generate Game Maps. url: http://gamedevelop

ment.tutsplus.com/tutorials/how-to-use-bsp-trees-to-generate-game-maps--
gamedev-12268 (visited on 04/22/2015).

Hendrikx, Mark et al. (2013). “Procedural Content Generation for Games: A Survey”. In: ACM Trans.

MultimediaComput. Commun. Appl.9.February, pp. 1–22. issn: 1551-6857. doi:10.1145/2422956.
2422957. arXiv: 1005.3014. url: http://doi.acm.org/10.1145/2422956.2422957.

Hughes, Jeff (2012). Study: US Rapidly Becoming a Nation of Gamers. url: http://www.digital
trends.com/gaming/study- us- rapidly- becoming- a- nation- of- gamers/ (visited on
04/21/2015).

I_2_i et al. (2010).what’s a good ping (latency). url: http://forums.steampowered.com/forums/
showthread.php?t=1201667 (visited on 04/24/2015).

IEEE (2015). Computational Intelligence and AI in Games, IEEE Transactions on. url: http://ieeex
plore.ieee.org/xpl/tocresult.jsp?isnumber=4907343\&punumber=4804728 (visited on
04/16/2015).

Iosup, Alexandru (2011). “POGGI : Generating P uzzle Instances for O nline G ames on G rid I nfras-

tructures”. In: Concurrency and Computation: Practice & Experience 23.2, pp. 1–15. url: http:
//www.st.ewi.tudelft.nl/~iosup/poggi09ccpe_cr_sub.pdf.

Johnson, Lawrence, Georgios N. Yannakakis, and Julian Togelius (2010). “Cellular automata for real-

time generation of infinite cave levels”. In: Proceedings of the 2010 Workshop on Procedural

Content Generation in Games - PCGames ’10. ACM, pp. 1–4. isbn: 9781450300230. doi: 10.1145/
1814256.1814266. url: http://portal.acm.org/citation.cfm?doid=1814256.1814266$

28

http://dx.doi.org/10.1145/965105.807481
http://portal.acm.org/citation.cfm?id=807481
http://www.gamasutra.com/view/feature/174311/procedural_content_generation_.php
http://www.gamasutra.com/view/feature/174311/procedural_content_generation_.php
http://www.brainyquote.com/quotes/quotes/a/antonigaud534341.html
http://www.brainyquote.com/quotes/quotes/a/antonigaud534341.html
http://dx.doi.org/10.1145/2464576.2464660
http://dl.acm.org/citation.cfm?doid=2464576.2464660
http://dl.acm.org/citation.cfm?doid=2464576.2464660
http://www.britannica.com/EBchecked/topic/342418/linguistics/35131/Computational-linguistics
http://www.britannica.com/EBchecked/topic/342418/linguistics/35131/Computational-linguistics
http://dx.doi.org/10.1109/CIG.2011.6032020
http://gamedevelopment.tutsplus.com/tutorials/how-to-use-bsp-trees-to-generate-game-maps--gamedev-12268
http://gamedevelopment.tutsplus.com/tutorials/how-to-use-bsp-trees-to-generate-game-maps--gamedev-12268
http://gamedevelopment.tutsplus.com/tutorials/how-to-use-bsp-trees-to-generate-game-maps--gamedev-12268
http://dx.doi.org/10.1145/2422956.2422957
http://dx.doi.org/10.1145/2422956.2422957
http://arxiv.org/abs/1005.3014
http://doi.acm.org/10.1145/2422956.2422957
http://www.digitaltrends.com/gaming/study-us-rapidly-becoming-a-nation-of-gamers/
http://www.digitaltrends.com/gaming/study-us-rapidly-becoming-a-nation-of-gamers/
http://forums.steampowered.com/forums/showthread.php?t=1201667
http://forums.steampowered.com/forums/showthread.php?t=1201667
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4907343\&punumber=4804728
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4907343\&punumber=4804728
http://www.st.ewi.tudelft.nl/~iosup/poggi09ccpe_cr_sub.pdf
http://www.st.ewi.tudelft.nl/~iosup/poggi09ccpe_cr_sub.pdf
http://dx.doi.org/10.1145/1814256.1814266
http://dx.doi.org/10.1145/1814256.1814266
http://portal.acm.org/citation.cfm?doid=1814256.1814266\backslashnhttp://dl.acm.org/citation.cfm?id=1814266\backslashnhttp://portal.acm.org/citation.cfm?doid=1814256.1814266
http://portal.acm.org/citation.cfm?doid=1814256.1814266\backslashnhttp://dl.acm.org/citation.cfm?id=1814266\backslashnhttp://portal.acm.org/citation.cfm?doid=1814256.1814266

Constructive Generation Methods for Dungeons

\backslash$nhttp://dl.acm.org/citation.cfm?id=1814266\backslashnhttp:
//portal.acm.org/citation.cfm?doid=1814256.1814266.

Kelly, George and Hugh McCabe (2007). “Citygen: An interactive system for procedural city gener-

ation”. In: Fifth International Conference on Game Design and Technology, pp. 8–16. url: http:
//www.citygen.net/files/citygen_gdtw07.pdf.

Kessing, Jassin, Tim Tutenel, and Rafael Bidarra (2012). “Designing Semantic Game Worlds”. In:

Proceedings of the The third workshop on Procedural Content Generation in Games - PCG’12.

ACM, pp. 1–9. isbn: 9781450314473. doi: 10.1145/2538528.2538530. url: http://dl.acm.
org/citation.cfm?doid=2538528.2538530.

Khaled, Rilla, Mark J. Nelson, and Pippin Barr (2013). “Design metaphors for procedural content

generation in games”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems - CHI ’13, p. 1509. doi: 10 . 1145 / 2470654 . 2466201. url: http : / / dl . acm . org /
citation.cfm?id=2470654.2466201.

Massive (2011). MASSIVE. url: http : / / www . massivesoftware . com / index . html (visited on

04/17/2015).

McLaughlin, Martyn (2013). New GTA V release tipped to rake in £1bn in sales. url: http://www.
scotsman.com/lifestyle/technology/new-gta-v-release-tipped-to-rake-in-1bn-
in-sales-1-3081943.

Miller, Brad L. and David E. Goldberg (1995). “Genetic Algorithms, Tournament Selection, and the

Effects of Noise”. In: Complex Systems 9.3, pp. 193–212. url: http://www.complex-systems.
com/pdf/09-3-2.pdf.

Oxford Dictionary (2015). Oxford Dictionary - Dungeon. url: http://www.oxforddictionaries.
com/definition/english/dungeon (visited on 04/17/2015).

Pavle, Ivic (2015). Linguistics. url: http://www.britannica.com/EBchecked/topic/342418/
linguistics/35095/Chomskys-grammar (visited on 05/06/2015).

Pech, Andrew (2013). “Using Genetic Algorithms to Find Cellular Automata Rule Sets Capable of

Generating Maze Like Game Level Layouts”. Bachelor Thesis. Edith Cowan University. url: http:
//ro.ecu.edu.au/cgi/viewcontent.cgi?article=1094\&context=theses_hons.

Pech, Andrew et al. (2015). “Evolving Cellular Automata for Maze Generation”. In: Artificial Life and

Computational Intelligence. Ed. by StephanK. Chalup, AlanD. Blair, andMarcus Randall. Springer

International Publishing, pp. 112–124. isbn: 978-3-319-14803-8. doi: 10.1007/978- 3- 319-
14803-8_9. url: http://link.springer.com/10.1007/978-3-319-14803-8_9.

Pedersen, Kim (2014b). Procedural Level Generation in Games using a Cellular Automaton: Part 1.

url: http://www.raywenderlich.com/66062/procedural- level- generation- games-
using-cellular-automaton-part-1 (visited on 04/23/2015).

– (2014a). Procedural Level Generation in Games. url: http://www.raywenderlich.com/wp-
content/uploads/2014/05/rw_procedural_level_generation_final.pdf.

Preuß, Mike (2015). Search-Based PCG.

Roden, Timothy and Ian Parberry (2004). “From artistry to automation: A structuredmethodology for

procedural content creation”. In: International Conference on Entertainment Computing, pp. 151–

29

http://portal.acm.org/citation.cfm?doid=1814256.1814266\backslashnhttp://dl.acm.org/citation.cfm?id=1814266\backslashnhttp://portal.acm.org/citation.cfm?doid=1814256.1814266
http://portal.acm.org/citation.cfm?doid=1814256.1814266\backslashnhttp://dl.acm.org/citation.cfm?id=1814266\backslashnhttp://portal.acm.org/citation.cfm?doid=1814256.1814266
http://portal.acm.org/citation.cfm?doid=1814256.1814266\backslashnhttp://dl.acm.org/citation.cfm?id=1814266\backslashnhttp://portal.acm.org/citation.cfm?doid=1814256.1814266
http://www.citygen.net/files/citygen_gdtw07.pdf
http://www.citygen.net/files/citygen_gdtw07.pdf
http://dx.doi.org/10.1145/2538528.2538530
http://dl.acm.org/citation.cfm?doid=2538528.2538530
http://dl.acm.org/citation.cfm?doid=2538528.2538530
http://dx.doi.org/10.1145/2470654.2466201
http://dl.acm.org/citation.cfm?id=2470654.2466201
http://dl.acm.org/citation.cfm?id=2470654.2466201
http://www.massivesoftware.com/index.html
http://www.scotsman.com/lifestyle/technology/new-gta-v-release-tipped-to-rake-in-1bn-in-sales-1-3081943
http://www.scotsman.com/lifestyle/technology/new-gta-v-release-tipped-to-rake-in-1bn-in-sales-1-3081943
http://www.scotsman.com/lifestyle/technology/new-gta-v-release-tipped-to-rake-in-1bn-in-sales-1-3081943
http://www.complex-systems.com/pdf/09-3-2.pdf
http://www.complex-systems.com/pdf/09-3-2.pdf
http://www.oxforddictionaries.com/definition/english/dungeon
http://www.oxforddictionaries.com/definition/english/dungeon
http://www.britannica.com/EBchecked/topic/342418/linguistics/35095/Chomskys-grammar
http://www.britannica.com/EBchecked/topic/342418/linguistics/35095/Chomskys-grammar
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1094\&context=theses_hons
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1094\&context=theses_hons
http://dx.doi.org/10.1007/978-3-319-14803-8_9
http://dx.doi.org/10.1007/978-3-319-14803-8_9
http://link.springer.com/10.1007/978-3-319-14803-8_9
http://www.raywenderlich.com/66062/procedural-level-generation-games-using-cellular-automaton-part-1
http://www.raywenderlich.com/66062/procedural-level-generation-games-using-cellular-automaton-part-1
http://www.raywenderlich.com/wp-content/uploads/2014/05/rw_procedural_level_generation_final.pdf
http://www.raywenderlich.com/wp-content/uploads/2014/05/rw_procedural_level_generation_final.pdf

Constructive Generation Methods for Dungeons

156. isbn: 978-3-540-22947-6. doi: 10.1007/978-3-540-28643-1_19. url: http://www.
springerlink.com/index/l8u5eeulq9g9n7fw.pdf.

Salen, Katie and Eric Zimmerman (2003). “Defining Games”. In: Rules of Play: Game Design Funda-

mentals. The MIT Press, pp. 83–92. isbn: 9780262240451.

Shaker, Noor and Antonios Liapis (2013). Lecture 3: Constructive GenerationMethods for Dungeons

and Levels. url: https://blog.itu.dk/MPGG-E2013/files/2013/09/3-dungeons1.pdf.
Shaker, Noor, Antonios Liapis, and Julian Togelius (2015). “Constructive generation methods for

dungeons and levels (DRAFT)”. In: Procedural Content Generation in Games: A Textbook and an

Overview of Current Research. Ed. by Julian Togelius, Noor Shaker, and Mark J Nelson. Springer,

pp. 25–44. url: http://pcgbook.com/wp-content/uploads/2013/09/chapter3.pdf.
Simon, Jeff (2009). 7YRL (the 7 Year Roguelike). url: https://7yrl.wordpress.com/2009/04/

10/7/ (visited on 04/22/2015).
Stiny, George and James Gips (1972). “Shape grammars and the generative specification of painting

and sculpture”. In: Information Processing 71 Proceedings of the IFIP Congress 1971. Volume 2 71,

pp. 1460–1465. doi: citeulike-article-id:1526281. url: <GotoISI>://INSPEC:466862.
Supertux.lethargik.org (2014). Super Tux. url: http://supertux.lethargik.org/ (visited on

04/21/2015).

Togelius, Julian et al. (2011). “Search-based procedural content generation: A taxonomy and sur-

vey”. In: IEEE Transactions on Computational Intelligence and AI in Games 3.3, pp. 172–186. issn:

1943068X. doi: 10.1109/TCIAIG.2011.2148116.
Togelius, Julian, Noor Shaker, and Mark J Nelson (2015a). “Introduction”. In: Procedural Content

Generation in Games: A Textbook and an Overview of Current Research. Ed. by Julian Togelius,

Noor Shaker, and Mark J Nelson. Springer, pp. 1–15. url: http://pcgbook.com/wp-content/
uploads/chapter01.pdf.

– (2015b). Procedural Content Generation in Games: A Textbook and an Overview of Current Re-

search. Springer.

Toth, Csaba David (2005). “Binary space partitions: recent developments”. In: Combinatorial and

Computational Geometry 52, pp. 525–552.

Tyler, Tim (1970). Cellular Automata - Neighbourhood survey. url: http://cell-auto.com/neigh
bourhood/ (visited on 04/24/2015).

Vahrenhold, Jan (2013). Informatik I : Grundlagender ProgrammierungKapitel 7 : FormaleSprachen.

Valencia (2006). Dungeon Sacred. url: http://forum.sacred2.com/attachment.php?attachm
entid=15821\&d=1149009769 (visited on 05/07/2015).

Valtchanov, Valtchan and Joseph Alexander Brown (2012). “Evolving dungeon crawler levels with

relative placement”. In:ACM International ConferenceProceedingSeries, pp. 27–35. isbn: 9781450310840.

doi: 10.1145/2347583.2347587. url: http://dl.acm.org/citation.cfm?id=2347583.
2347587\backslashnhttp://www.scopus.com/inward/record.url?eid=2- s2.0-
84866030353\&partnerID=40\&md5=b35d4d51e1b26ce95153131f449ccb9d.

Van der Linden, Roland (2013). “Designing Procedurally Generated Levels”. Master Thesis. Delt Uni-

versity of Technology, p. 72.

30

http://dx.doi.org/10.1007/978-3-540-28643-1_19
http://www.springerlink.com/index/l8u5eeulq9g9n7fw.pdf
http://www.springerlink.com/index/l8u5eeulq9g9n7fw.pdf
https://blog.itu.dk/MPGG-E2013/files/2013/09/3-dungeons1.pdf
http://pcgbook.com/wp-content/uploads/2013/09/chapter3.pdf
https://7yrl.wordpress.com/2009/04/10/7/
https://7yrl.wordpress.com/2009/04/10/7/
http://dx.doi.org/citeulike-article-id:1526281
<Go to ISI>://INSPEC:466862
http://supertux.lethargik.org/
http://dx.doi.org/10.1109/TCIAIG.2011.2148116
http://pcgbook.com/wp-content/uploads/chapter01.pdf
http://pcgbook.com/wp-content/uploads/chapter01.pdf
http://cell-auto.com/neighbourhood/
http://cell-auto.com/neighbourhood/
http://forum.sacred2.com/attachment.php?attachmentid=15821\&d=1149009769
http://forum.sacred2.com/attachment.php?attachmentid=15821\&d=1149009769
http://dx.doi.org/10.1145/2347583.2347587
http://dl.acm.org/citation.cfm?id=2347583.2347587\backslashnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84866030353\&partnerID=40\&md5=b35d4d51e1b26ce95153131f449ccb9d
http://dl.acm.org/citation.cfm?id=2347583.2347587\backslashnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84866030353\&partnerID=40\&md5=b35d4d51e1b26ce95153131f449ccb9d
http://dl.acm.org/citation.cfm?id=2347583.2347587\backslashnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84866030353\&partnerID=40\&md5=b35d4d51e1b26ce95153131f449ccb9d

Constructive Generation Methods for Dungeons

Van der Linden, Roland, Ricardo Lopes, and Rafael Bidarra (2013). “Designing Procedurally Gen-

erated Levels”. In: Proceedings of IDPv2 2013 - Workshop on Artificial Intelligence in the Game

Design Process, pp. 41–47. url: http://www.aaai.org/ocs/index.php/AIIDE/AIIDE13/
paper/viewPaper/7450.

Venator_Noctis (2011). Dungeon Diablo 2. url: http://www.diablofans.com/forums/diablo-i
ii-general-forums/diablo-iii-general-discussion/21172-dungeons-caves-should-
be-dark-to-have-that-evil (visited on 04/18/2015).

Weise, Thomas (2009). “Genetic Algorithms”. In: Global Optimization Algorithms – Theory and Ap-

plication –. 2nd. Chap. 2, pp. 141–156. doi: 10.1.1.64.8184.
Wikidot (2009). Procedural Content Generation Wiki - Generative Art. url: http://pcg.wikidot.

com/pcg-algorithm:generative-art (visited on 04/17/2015).
Willbr (2006).DungeonDoom. url: http://doom.wikia.com/wiki/File:Doom-2-screenshots-

3.jpg (visited on 05/07/2015).
Williams, Nathan (2014). An Investigation in Techniques used to Procedurally Generate Dungeon

Structures. Tech. rep., pp. 1–60. url: http://www.nathanmwilliams.com/files/AnInvestig
ationIntoDungeonGeneration.pdf.

Wizards of the Coast (2015). Dungeons and Dragons. url: http://dnd.wizards.com/ (visited on
04/17/2015).

Wolfram, Stephen (2002). “Notes for Chapter 2: The Crucial Experiment”. In: A New Kind of Science.

Wolfram Media, pp. 865–882. isbn: 978-1579550080. url: https://www.wolframscience.
com/reference/notes/876b.

31

http://www.aaai.org/ocs/index.php/AIIDE/AIIDE13/paper/viewPaper/7450
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE13/paper/viewPaper/7450
http://www.diablofans.com/forums/diablo-iii-general-forums/diablo-iii-general-discussion/21172-dungeons-caves-should-be-dark-to-have-that-evil
http://www.diablofans.com/forums/diablo-iii-general-forums/diablo-iii-general-discussion/21172-dungeons-caves-should-be-dark-to-have-that-evil
http://www.diablofans.com/forums/diablo-iii-general-forums/diablo-iii-general-discussion/21172-dungeons-caves-should-be-dark-to-have-that-evil
http://dx.doi.org/10.1.1.64.8184
http://pcg.wikidot.com/pcg-algorithm:generative-art
http://pcg.wikidot.com/pcg-algorithm:generative-art
http://doom.wikia.com/wiki/File:Doom-2-screenshots-3.jpg
http://doom.wikia.com/wiki/File:Doom-2-screenshots-3.jpg
http://www.nathanmwilliams.com/files/AnInvestigationIntoDungeonGeneration.pdf
http://www.nathanmwilliams.com/files/AnInvestigationIntoDungeonGeneration.pdf
http://dnd.wizards.com/
https://www.wolframscience.com/reference/notes/876b
https://www.wolframscience.com/reference/notes/876b

Constructive Generation Methods for Dungeons

A Statistics Regarding Percentage of Gamers in Germany

32

	List of Figures
	List of Tables
	List of Listings
	Abbreviations
	Symbols
	Introduction
	Definitions
	Procedural Content Generation (for Games)
	Content
	Games

	Dungeon
	Motivation

	Constructive Generation Methods for Dungeons
	Space Partitioning
	Areas of Application, Pros and Cons
	Background Information
	Dungeon Creation Algorithm

	Cellular Automata
	Areas of Application, Pros and Cons
	Background Information
	Dungeon Creation Algorithm

	Evolving Cellular Automata
	Areas of Application, Pros and Cons
	Overview over Genetic Algorithms
	Dungeon Creation Algorithm

	Generative Grammars
	Areas of Application, Pros and Cons
	Overview over Grammar Types
	Dungeon Creation Algorithm

	Limitations and Conclusion
	References
	Statistics Regarding Percentage of Gamers in Germany

