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Abstract

This report presents the definitions of the problem set used for the GECCO 2019 workshop on Under-
standing Machine Learning Optimization Problems (UMLOP), which is the successor of the PPSN 2018
workshop on Investigating Optimization Problems from Machine Learning and Data Analysis.

Introduction

Black-box optimization is a problem of major focus in the areas of evolutionary computation, meta-
heuristics and nature-inspired algorithms. Despite a large amount of research, there are relatively few
standard benchmark problem sets available. Benchmark sets that are both based on real-world problems
and well-suited to benchmarking are particularly rare.
In this report we propose the development of a set of benchmark optimization problems from the area of
machine learning and data analysis. This could be considered a preliminary version of a benchmark set
in this area, which we hope to develop further in the near future.

You can download the data needed when dealing with our test problems, by clicking on the links below:
• data for test problem 1
• data for test problem 2
• data for test problem 3
• data for test problem 4

For further information regarding this workshop, please refer to our workshop’s website

http://www.erc.is/go/gecco2019

or send us an e-mail.

1

mailto:kerschke@uni-muenster.de
http://erc.is/p/kerschke
mailto:marcusg@uq.edu.au
http://staff.itee.uq.edu.au/marcusg/
mailto:m.preuss@liacs.leidenuniv.nl
https://www.universiteitleiden.nl/en/staffmembers/mike-preuss
mailto:olivier.teytaud@gmail.com
https://gecco-2019.sigevo.org/index.html/Workshops#id_Understanding%20Machine%20Learning%20Optimization%20Problems%20(UMLOP)
https://gecco-2019.sigevo.org/index.html/Workshops#id_Understanding%20Machine%20Learning%20Optimization%20Problems%20(UMLOP)
https://sites.google.com/view/optml-ppsn18/home
https://www.wi.uni-muenster.de/sites/wi/files/users/kerschke/gecco2019/p1-sum_of_squares.zip
https://www.wi.uni-muenster.de/sites/wi/files/users/kerschke/gecco2019/p2-mlp.zip
https://www.wi.uni-muenster.de/sites/wi/files/users/kerschke/gecco2019/p3-sammon.zip
https://www.wi.uni-muenster.de/sites/wi/files/users/kerschke/gecco2019/p4-earth.zip
http://www.erc.is/go/gecco2019


Test Problem 1: Sum of Squares Clustering Problems

The (continuous) sum of squares clustering problem provides the theoretical counterpart of the facility
location problem. Given a set X = {x1, . . . ,xn} ⊆ Rd of n data points (in the d-dimensional search
space), determine the locations of a set of k cluster centers C = {c1, . . . , ck} ⊆ Rd such that

f(C|X ) =

n∑
i=1

k∑
j=1

bi,j · ||xi − cj ||2 with bi,j =

1, if ||xi − cj ||2 = min
l∈{1,...,k}

||xi − cl||2

0, otherwise
.

is minimized. Here ||.|| is the Euclidean distance metric (also known as L2-norm) and the variables are
the coordinates of the cluster centers in the data space. Denote the d-dimensional coordinates of the i-th
cluster center as ci = (yi+1, . . . , yi+d), then the problem can be rewritten as an unconstrained, continuous
optimization problem of dimensionality p = d · k, whose goal is finding the optimal p-dimensional vector
yopt = (c1, . . . , ck)T ∈ Rp.
A specific clustering problem instance is therefore defined by a dataset X , and the desired number of
clusters k. The dimensionality of the underlying optimization problem grows in proportion to d and k,
but is independent of the number of data points n.

Problem 1a: Sum of Squares Clustering on the Ruspini data set. This is a two-dimensional
dataset (d = 2) and we are interested in the optimal location of k = 5 cluster centers. Therefore, we look
for yopt ∈ R10. The figure below illustrates the location of all n = 75 observations from the dataset, as
well as the best solution found by means of running k-means.

initial kmeans: 10126.71979
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The global optimum to this problem (10 126.71979) was reported in Du Merle et al. (2000) and corre-
sponds to the following values as found via k-means:

yopt =



c1

c2

c3

c4

c5


=



20.150000000000
64.950000000000
43.913043478261

146.043478260870
68.933333333333
19.400000000000
80.500000000000

100.250000000000
103.615384615385
119.384615384615


Problem 1b: Sum of Squares Clustering on the German towns data set. This is a three-
dimensional data set (d = 3) and the goal is to find the optimal locations for k = 10 cluster centers
within the search space – or similarly, finding the global optimum of a p = 30 dimensional problem.

Possible variations for these problems could be the usage of alternative values for k, or randomly sampling
datasets and thereby mimicking a “similar” problem instance. Note that these problems are in general
unconstrained. However, reasonable solutions will have their cluster centers in the range of the dataset, so
this can be used as bounds (e.g., for initializing the algorithms). The corresponding datasets, supporting
Matlab code, the locations and the corresponding fitness values for the optimal locations of the cluster
centers, as well as further information for these two problems can be found at: http://realopt.uqcloud.
net/ess_clustering.html.
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Test Problem 2: Multi-Layer Perceptron

Multi-layer perceptrons (MLP) are supervised learning models, which basically learn rules to map data
from an input to an output space (see, e.g., Bishop, 1995). In recent years, their much larger, and hence
more complex successors – deep learning neural networks – have drawn lots of interest and meanwhile
form the state of the art in a variety of application areas, such as image analysis, speech recognition,
cancer detection or self-driving cars. Yet, basically any classification or regression tasks with a reasonable
amount of training and test data can be modeled with these networks. In order to get a better feeling for
the structure and hence the decision process of such a network, the problems analyzed herein are based
a “simple” 1-3-1 (MLP1) network (cf. Figure 1). These are fully connected feed-forward 1-D regression
networks with one input node, three nodes in a single hidden layer, and an output node, complemented
by biases and hyperbolic tangent (tanh) activation functions (in the hidden units). Given such a network,
the problem then is to minimize

f(θ) =
1

n

n∑
i=1

(g(xi,θ)− yi)
2

with g(xi,θ) = v0 +

3∑
j=1

(vj · tanh(w0j + xi · w1j)) .

This is a 10-dimensional unconstrained continuous optimization problem over the set of parameters
θ = {w01, w11, w02, w12, w03, w13, v0, v1, v2, v3}. The input data x1, . . . , xn ∈ [−1, 1] is made of n = 50
one-dimensional points, which are regularly spaced between −1 and 1. For the corresponding output yi,
four different problem sets, whose mappings are also depicted in Figure 2, are considered:

• P2a: quadratic function, i.e., yi = x2
i

• P2b: sine function, i.e., yi = sin(xi)

• P2c: absolute value function, i.e., yi = |xi|

• P2d: heavyside function, i.e., yi =

{
0, if x < 0

1, if x ≥ 0
.

Figure 1: Schematic representation of the 1-3-1
(MLP1) network with one input node, three nodes
in the (single) hidden layer and an output node.

P2c: absolute value P2d: heavyside

P2a: quadratic P2b: sine
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Figure 2: Mapping from input xi to output yi for
each of the four problems: the quadratic (P2a),
sine (P2b), absolute value (P2c) and heavyside
(P2d) function (top left to bottom right).

3



Test Problem 3: Multidimensional Scaling via Sammon Mapping

Multidimensional scaling (MDS) methods attempt to find a low-dimensional representation of a given
data set – e.g., to produce a 2- or 3-D visualization of the spatial distribution of the data points (see,
e.g., Cox and Cox, 2000). One well-known criterion for this is known as Sammon mapping (Sammon,
Jr., 1969), where the optimization problem is to minimize the Sammon stress function

E(z1, . . . , zn) =
1∑n−1

r=1

∑n
s=r+1 ||xr − xs||

n−1∑
r=1

n∑
s=r+1

(||zr − zs|| − ||xr − xs||)2

||xr − xs||
.

Here, xr and xs are a pair of points in the original (d-dimensional) data space, and zr and zs correspond
to their low-dimensional representation. Further, ||.|| is the Euclidean distance metric (also known as
L2-norm). The problem instances are defined by their data sets. So far, the high-dimensional data (i.e.,
x1, . . . ,xn) for two data sets are given (see below) and the goal is to find suitable sets of low-dimensional
decision variables z1, . . . , zn that are optimal w.r.t. the aforementioned stress function.

Problem P3a: Ripley’s Virus Dataset. Although the origins of this dataset date back to Fauquet
et al. (1988), the data is more often referenced to Ripley (1996)1, who used it to describe different
multidimensional scaling techniques – including Sammon mapping – within his book. Here, we focus on
the subset of the most frequent class of viruses within the original data: the so-called tobamoviruses.
The corresponding dataset (virus3.dat) contains 38 observations of 18 measurements each and it is
available at https://www.stats.ox.ac.uk/pub/PRNN/. Based on the amount of observations, finding a
two-dimensional representation of this dataset transfers into a 76-dimensional unconstrained continuous
optimization problem. Figure 3 shows the initial and final solution of an exemplary optimization run, as
well as the trajectory of the Sammon stress function during the optimization process.

Initial Solution (0.1190)
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Figure 3: Visualization of the initial (left) and final solution (middle) of an exemplary optimization run
on Problem P3a (Ripley’s virus data). The image on the right displays the trajectory of the Sammon
stress function during the optimization process.

Problem P3b: Lloyd’s Bank Employee Data. This dataset was first published by Izenman (2008).
It contains sequential employment records for 80 randomly selected employees from 1905 to 1909 and
thus corresponds to a 160-dimensional unconstrained continuous optimization problem. The dataset is
available online at: https://astro.temple.edu/~alan/MMST/datasets.html. The file (samp05.xls)
contains an ID variable (ID), a variable recording the first year of the employee’s employment (YEAR),
and 71 variables containing the sequential data (V1-V71). Further details on this dataset, as well as a
file with a proximity matrix (samp05d.xls) containing pre-calculated values of ||xr − xs||, can also be
found on the aforementioned website.

1Some further information can also be found here: http://www.stats.ox.ac.uk/~ripley/MultAnal_HT2008/Viruses.pdf
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Test Problem 4: Landscape of the Planet Earth

A Global Digital Elevation Map (GDEM) image of the Earth (see Figure 4) is available online at
https://asterweb.jpl.nasa.gov/gdem.asp. Consider this as a two-dimensional continuous optimiza-
tion problem, where the goal is to find the maximum elevation value, f(x) with x ∈ R2. The resolution
of the image is 4320×2160 pixels, which implies that this is a box-constrained optimization problem with
(x1, x2) ∈ [0, 4320]× [0, 2160] being the feasible region for the search space.
Note that f defines a high-resolution staircase-like objective function, where the gradient is everywhere
either zero or infinite. The elevation function f is implemented as a look-up table and the underlying
data (4MB .zip file, 146MB uncompressed) is available online at: https://drive.google.com/open?

id=1EC7DzaQaw7jp3BDYnOIqQpdA4HpfnBcL.

Figure 4: Visualization of the Earth’s landscape.
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Test Problem 5: Buoy Placement

This problem relies on a simulator, which computes the energy landscapes resulting from waves in the
ocean. Those landscapes are the foundation for reasonable buoy placement, which in turn are used for
(efficient) energy generation. Of course, it is desirable to place the buoys such that they produce as much
energy as possible (cf. Figure 5). The Optimisation and Logistics group at the University of Adelaide
provides a Matlab-based implementation2 of such an energy landscape simulator.
While finding the ideal location of a single buoy might still be quite easy, positioning multiple buoys
is a rather challenging task as every single buoy influences the waves and thereby changes the energy
landscape. In addition, even single evaluations with this Matlab-based simulator are already time con-
suming and thus make this an expensive optimization problem. There also exist first analyses based on
this simulator (Arbonès et al., 2016, 2018; Neshat et al., 2018; Wu et al., 2016), which of course might
provide a good introduction into this topic.

Figure 5: Exemplary placement of four (left) and nine (right) buoys, respectively. This figure was taken
from Arbonès et al. (2018).

Here, we are interested in the ideal location(s) for b ∈ {1, 3, 5} buoys in the ocean’s two-dimensional
surface (based on the simulator), which corresponds to 2-, 6- and 10-dimensional box-constrained opti-
mization problems.
Aside from the aforementioned optimization problem, we also look for submissions which analyze the
corresponding energy landscape(s), including how they change based on the buoy placement. Of course,
faster implementations of the simulator (in any common programming language, such as C, Java, python,
R, etc.) are highly appreciated as well.

2https://cs.adelaide.edu.au/~optlog/research/wind/2016gecco-wec-code.zip
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