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Decision Space of Complex Problem
Introduction EXperiments 107 2=\ \
Multiobjective optimization algorithms are particularly challenged by « Evaluation of problem and algorithm characteristics ) |
multimodality of the underlying landscape caused by interaction of e MPM-2 Generator used to build simple and complex
objective functions. Thus, sophisticated Exploratory Landscape Analysis problems (examples presented here for m = 2)
(ELA) features which are able to assess the level and type of multimodality
have huge potential for understanding algorithm behaviour, automated . Scenario
. . . . Count Characteristic :
algorithm selection and algorithm design. Simple Complex
Here, we lay the groundwork for constructing such experimental features gga;?“naaifobr{'l;;’;:m' 2) ! Vg" 3 S ‘flsg S
systematically by providing formal definitions of multimodality in terms of connected components 3 30
distinguishing between local and global efficient sets. sets connected to global efficient set 2 66
fronts connected to global efficient front 2 12
local (global) efficient sets 4 (2) 167 (7) | | | |
M ltlmOdallt 0.0 0.2 0.4 0.6 0.8 1.0
U y Objective Space of Complex Problem
Some topological notation in R“ (decision space): « Apply two different local search strategies to the given
, , , problems:
1. Let A C R"™. The set A Is called connected iIf and only If there do not
exist two open, disjoint subsets U; and U, of R™ such that A C U; U Uy,
U NA+# 0 and Us N A + 0. Hypervolume Indicator Gradient Ascent (HIGA-MO) Stochastic Local Search (SLS)
2. Let B € R"™. A su bset C C B IS a C.Of]n-eCted Qomponent of B Iﬂ: C'is 1: Initialize the search points X uniformly in the search space lsr;iﬂiiléyr’];zLi:ijpendently andom
connected, and any subset of B which Is a strict superset of C' i1s not 2: while the termination criteria are not satisfied do
i _ 3 Evaluation: Y « X . In every iteration, each solution
connected, and C'Is non empty- 4 {L.;}ff:lg— non-dominated-sorting(R)) undergoes upper bounded normal
. 2 fo;;r:e\fetrozqi?w . do distributed  perturbation  with
Pareto concepts (very brlef): 8 Compﬂté the ;ubgradient OH(X) /0, Sr’rtlzzl_r:itzjgli:%exp;jlze of 0. Here the
Let f : X — R™ be a multiobjective function where X C R< is the deci- AR A o
sion space. We wil.l denote the component functipns of f by f; : X = R, © eng“ﬂhfi?; perturbeﬂ SO nsa ANt e el
i = 1,....,m. A point x € X Is called Pareto efficient or global efficient iff 2 return {L}7 XY ing solution survives.
there does not exist x € X such that f(x) < f(x). The subset of X consisting with yi = [f16x), folx)]Ts =100 00 02 04 06 08 10
of all the efficient points of X Is denoted by X and is called the efficient ' ' ' | | '
subset of X The image of X under f is called the Pareto front of f. Y
Problem Characteristics Algorithm Characteristics
Efficient points in X and local efficient sets in the multiobjective case: = 1.00- |- 100 et
L .. £\
- A point x € X is called a locally efficient point of X (or of f) if there is = % 0.75° iﬂgc::tGh;n_Mo 0.75- & “ / 1
an open set U C R% with x € U such that there is no pointx e UN X 8) 'S o D < s 0 S % A
such that f(x) < f(x). The subset of all the local efficient points of X is = 2 g S T N g 090" e \ Iy
denoted by X7 . - @ o . L simple Vﬁﬂ,;é/ &'/
. . . . . . C -Id ol \\\ ) -®- complex 0.25- P e
-+ Apoint x € X is called a global efficient point of X (or of f) if there is © (T iz i
no point x € RY N X such that f(X) < f(x). The subset of all the global GE) e 000" | | 00— —— —
7 efficient points of X Is termed efficient set of f and denoted by X%. — U > ¢ & ¢ & ¢ O <& ¢ ¢ & ¢ & &
/, _8 ¥ ‘360 0(\{\/ o{\(\/ <§),,3\/ \60'2}/ O{\(\/ 00({2*/ 60,2}/ 60,5\/ OQQ}/ 60(2}/ 60,2}/ 00(2}/ OOQ}/
/ . . . . N OO A\ O X A\ N N N
-+ Asubset A C Xisa local efficient set of f if Aisaconnected component = F & & 0 @0"’ & & Q0Q9 0009 S 0@9\’ 0&\9\’ & &
” . . . . N % ™/ N ) X X c§ 2 c§ & o
e of X1 (= the subset of X which consists of the local efficient points of S ch,‘\“/\@(&‘ \Q@\ \Q@Q K & Oo\\é
,l' X) ~~~~~ ~ N2 K
I‘\ Decision Space of Simple Pro;:\r{em 0 Objective Space of Simple Problem
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Local and Global Pareto Front: %
+ Asubset P of the image of f is a local Pareto fro'nt of f, If there exists a $
local efficient set F such that P = f(FE). = 7
o :j'
- The (global) Pareto front (PF) of f is obtained by taking the image under O
f of the union of the connected components of the set of global efficient i
points of X. If X is connected, then the (global) Pareto front of f is also
connected, provided f is continuous on Xg. |
Analytics on Simple Mixed Sphere Problems
1 | d
flx)=1- max {gi(x)}, x€R (1) : : N : . . ‘
51 -1 9-8.0 0.2 054 0.6 0.;8 1%0 | 0.9" f f
gi(x) = H; (1+ (\/(XC@)TD(X%)) /Rz) ,i=1,...,N  (2) f ’ . . - -
| . | n Ion
Functions g; define peaks with center ¢;, depth H;, radius R; and shape s;. CO ClUS O
D is the covarigncg matrix i_nverse. We focus on the simple:st bi-ojective case « This work provides a thorough definition of multimodality for multiobjective optimization problems.
v\{here eaf:h ObJPZCt'Ve function ConsISts of 0”‘3,’ one spherical peak. The efn- « Analytical and experimental approaches are presented which derive the global and local Pareto fronts.
clent set 1s the line segment connecting cto ¢/, for N = 2.
1 « Mixed sphere test problems of different levels of multimodality are designed and the behavior of HIGA-MO
R1/s H 1/s\ \ ¥ and a stochastic local search variant are contrasted.
fo=1—H |14 [d(c,c; D) [1— —1 /R’ . _ . . e
d(c,c’;D) \ 1 — fi e Multimodality Is a crucial factor determining the difficulty of a problem
| * Indicators are derived which allow to assess algorithm behavior w.r.t. the detection of global and local
The range of fy Is [min{ fi(c), f1(c") }, max{fi(c), fi(c')}]. Pareto fronts which can further be used for performance assessment and (later) algorithm selection.
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