Cross-Platform Model-Driven Development
of Mobile Applications with b

Henning Heitkotter
Dept. of Information Systems
University of Minster
Muinster, Germany
heitkoetter@ercis.de

ABSTRACT

Mobile applications usually need to be provided for more
than one operating system. Developing native apps sepa-
rately for each platform is a laborious and expensive un-
dertaking. Hence, cross-platform approaches have emerged,
most of them based on Web technologies. While these enable
developers to use a single code base for all platforms, result-
ing apps lack a native look & feel. This, however, is often de-
sired by users and businesses. Furthermore, they have a low
abstraction level. We propose mp?, an approach for model-
driven cross-platform development of apps. With mn?, de-
velopers specify an app in a high-level (domain-specific) lan-
guage designed for describing business apps succinctly. From
this model, purely native apps for Android and iOS are auto-
matically generated. mp? was developed in close cooperation
with industry partners and provides means to develop data-
driven apps with a native look and feel. Apps can access the
device hardware and interact with remote servers.

Categories and Subject Descriptors

D.2.3 [SOFTWARE ENGINEERING]: Coding Tools
and Techniques; H.5.2 INFORMATION INTERFAC-
ES AND PRESENTATION]: User Interfaces

General Terms

Design, Documentation, Languages

Keywords

Model-driven software development, business app, mobile

1. INTRODUCTION

Mobile devices such as smartphones and tablets have dra-
matically increased in popularity. What propels their ver-
satility and adaptability, however, is not the swift growth
of computational power but the applications developed for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’13 March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

Tim A. Majchrzak
Dept. of Information Systems
University of MUnster
Munster, Germany
tima@ercis.de

Herbert Kuchen
Dept. of Information Systems
University of MUnster
Munster, Germany
kuchen@ercis.de

them. The number of these apps is growing steeply. Compa-
nies begin to embrace the opportunities of apps and develop
more apps with a business purpose. Currently, at least five
platforms have a relevant number of users (Android, Black-
berry, iOS, Symbian, and Windows Phone). Platforms in
this respect subsume operating systems, source development
kits (SDK), and device-specific features. Apps have to be de-
veloped separately for each one. Due to profound differences
in programming interfaces, libraries, and programming lan-
guages, effort increases almost linearly with the number of
platforms. These resources could be used more effectively.
At the same time, not supporting platforms relevant for their
customers is problematic for enterprises. Usually, at least
Android and iOS support is required for business apps.

Cross-platform approaches are used when an application
has to be developed for several platforms. Popular frame-
works for cross-platform app development are currently ei-
ther based on Web technology or use native components in
an interpreting environment. Web-based approaches result
in apps that more or less look and behave like Web sites.
They are rather mature, but lack a native look & feel. The
second achieve an (almost) native look & feel; but all such-
like approaches have severe shortcomings with respect to ab-
straction level, performance, feature completeness, or bugs
[9] (see Related Work). A truly native look & feel of apps is
expected by consumers and important for enterprises as we
learned in interviews with partners from industry. Hence,
novel cross-platform approaches need to be investigated.

Model-driven software development (MDSD) works well
for PC and server scenarios, e.g., enterprise applications
based on Java EE (cf. [23]). The idea of MDSD is to describe
a problem in a model and generate software from this rep-
resentation. The additional modeling effort is offset by easy
and efficient subsequent generation. Moreover, a modeling
language can be an effective tool for capturing requirements.
Tool support for MDSD is sophisticated [15]. Developing n
apps that share the same functionality and basic behavior
but are deployed to platforms that differ in interface de-
sign, usability, and development is a suitable area for MDSD.
To evaluate the usefulness of MDSD in this context, we de-
veloped mp? as a prototypical framework for model-driven
cross-platform development of mobile applications. Apps are
described in a domain-specific language (DSL) tailored for
wp’. They then undergo transformation steps towards na-
tive, platform-specific code. Eventually, they are deployed
as purely native apps of the selected platforms.

In this paper, we introduce mp? and describe its develop-

© ACM, 2013. This is the authors’ version of the work. It is posted here by permission of ACM for personal use. Not for redistribution. The defini-
tive version was published in the proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC 2013), DOI: 10.1145/2480362.2480464.

http://dx.doi.org/10.1145/2480362.2480464

ment. The paper is structured as follows: the next section
describes the background of our model-driven framework,
its scope, and our research approach. Section 3 gives an
overview of mp®’s architecture. Afterwards, we present its
language in Section 4 and code generators in Section 5. Sec-
tion 6 describes related work. The discussion in section 7
compares mb’ to other approaches and evaluates it. It also
describes first results from developing real-world apps. Sec-
tion 8 concludes and outlines some future work.

2. MODEL-DRIVEN MOBILE
DEVELOPMENT

Model-driven development fits nicely to the problem of
cross-platform mobile development. MDSD bases the devel-
opment of significant parts of a program on models. Auto-
matic transformations generate source code from developer-
defined models. There can also be several transformations
generating code for different target platforms. App develop-
ers describe their app on a comparatively high level and this
specification is translated into code for different mobile plat-
forms. There not only is a single, cross-platform code base
(i.e., the model) but also an increased abstraction level and
fast development cycles. Generated apps are truly native
and do not suffer from any of the problems that Web-based
approaches exhibit with respect to native look & feel.

Our framework mp? implements this idea for the domain
of data-driven business apps. It was developed in close con-
tact with industry partners. We gathered typical require-
ments of business apps from requirements specifications of
selected enterprise products of our partners. Additional in-
terviews with developers and managers completed the list of
features typically required of apps in our context. In a top-
down approach, we decided on the features of mp? from this
list by prioritizing the most-often found requirements. Only
then did we reconcile these features with those provided by
today’s mobile devices to ensure the practicability of our ap-
proach. Altogether, our approach ensures that mp? satisfies
the needs of business app developers.

For data-driven business apps, developers need to

e define data types, and access create, retrieve, update,
and delete operations (CRUD) for these types, locally
on the device as well as on a server;

e implement the user interface (UI) with different lay-

outs, especially Uls with tabular views (tabs), and with

a variety of typical Ul components;

control the sequence of Ul views;

define data bindings and input validation;

react to events and state changes; and

use device features such as GPS.

We focused on code generation for tablets. This is only a
matter of deliberate self-restriction, no inherent limitation.
Apps generated with mp? can also be run on smartphones,
they merely are not (yet) optimized for these devices.

3. OVERVIEW OF mp?

Developing apps with mp? proceeds in three phases, of
which only the first consists of actual work for the devel-
oper. First, the developer describes the app in a textual
model. Second, a code generator for each of the supported

platforms transforms the model into source code for the re-
spective platform along with necessary structural elements
such as project files. At the moment, code generators for
Android and iOS are available. The third phase only re-
quires the developer to compile the generated source code.
For this, he can use the corresponding development envi-
ronments such as the Android Developer Tools or Xcode for
iOS. The native packages can then be run on actual devices
that use the respective operating system (or in a simulator
for debugging). Of these three phases, only the first phase
requires cognitive effort. The code generation in the second
phase happens automatically in the background; the third
could be automated as well. Hence, app developers can suc-
cessively enhance the model and thus proceed iteratively.

Only the first two phases involve the mp? framework, while
the third phase resorts to the tools provided by each platform
vendor. The framework provides several components to sup-
port or execute, respectively, these phases. We have defined
a language for expressing an app as a high-level model, as
needed by the first phase. It is a textual, domain-specific lan-
guage (DSL). In contrast to a general-purpose programing
language, it is tailored to the domain of mobile applications.
The abstract syntax and the textual notation of the lan-
guage have been defined and implemented using Xtext [27].
Xtext is a language development environment for the Eclipse
platform. Besides a parser, it also creates an editor for the
language. The editor for mn? offers features such as syntaz
highlighting, content assistance and wvalidation. Thereby, it
facilitates the specification of models.

wp’ runs the second phase (code generation) fully auto-
mated as soon as the developer saves his model. The parser
constructs the abstract syntax of the model and provides
this set of elements and their relationships to the subse-
quent steps of code generation. Before invoking the code
generators, the model is preprocessed to simplify subsequent
generation. Next, the Android and the iOS code genera-
tor traverse the model and generate the individual apps by
translating it into source code. Each code generator creates
the source code of the app for the respective mobile oper-
ating system — Java for Android and Objective-C for iOS.
They also create files in XML, e.g., to implement the graph-
ical user interface (GUI) in Android or to specify the data
model in i0S. Moreover, project files and settings for Eclipse
(Android) and Xcode (iOS) are generated. Generated apps
are bundled with (static) libraries for common features.

In addition to apps, a further code generator creates a
server backend based on the data model of the application.
The backend can be run on a JavaEE application server.
While the generated backend is fully functional, it should
serve as a blueprint for the remote application programming
interface (API) expected by the generated apps and is in-
tended to be adapted to the existing server infrastructure.

The mp? language and, therefore, apps created with the
framework follow the Model-View-Controller (MVC) pat-
tern. The separation of concerns is reflected in all compo-
nents: the model of an app is separated into model, view, and
controller part. In generated apps, the controller is based
on an event system, which handles all user actions as well as
internal or device events. Developers specify in the model
what actions should be taken if a certain event occurs. This
is reflected in an event bus as the backbone of the apps.

package org.example.library .models
entity Book {

title : string

author : string(optional)

isbn : string { name "ISBN” }

entity LoaNREQUEsT {
bookRequested : Book
email : string

COONOURWN -

-

Figure 1: Data model of an exemplary mp® app

4. LANGUAGE AND CONCEPTS OF mb?

First, basics are introduced. Then, wn? is described dif-
ferentiated by model, view and controller.

4.1 From Requirements to Specification

The domain-specific language for specifying mobile appli-
cations is a central part of mp? and forms the basis for all
other components. The language specification defines the
concepts that are later used by developers to model the app
and that are mapped to a platform-specific implementation
by the code generators. Hence, this section also serves as the
documentation of the scope of mp?, i.e., its set of features.

The DSL was designed in a top-down manner as specified
in Section 2. Among its most important design goals was the
desire to significantly raise the abstraction level necessary for
specifying data-driven apps compared to manual implemen-
tation. Hence, it should describe the problem space of apps
instead of the solution space, which is the target of subse-
quent code generation. Furthermore, the DSL should enable
developers to quickly implement apps that have standard re-
quirements or are of a prototypical nature. Still, it should
be powerful enough for apps with complex UI and advanced
interaction scenarios. It should support all features outlined
in Section 2, not just the lowest common denominator of mo-
bile platforms, and adhere to the architecture of Section 3.
mwp?’s DSL meets these requirements through four main de-
sign principles: separation of MVC components, declarative
style, convention over configuration, and modularity.

As defined by the general MVC' architecture, the model of
an app has to be split into three packages, one for each MVC
component. A package only uses those parts of the language
that deal with the respective component. The description of
the app is thus on a first level structured into separate MVC
components according to functional criteria and can, on a
second level, be partitioned into structural components. For
example, each screen of the user interface could be described
in a separate file of the view component. These structural
means enable a clear separation of concerns and provide the
flexibility to structure the model to fit the app.

The language is declarative in the sense that an app de-
veloper specifies what the app should accomplish instead of
prescribing how to accomplish it algorithmically [16]. Thus,
all components focus on the problem space. For example, the
view model describes what the user interface should look like,
i.e., its GUI elements and their composition, but not how to
build it in a sequence of imperative statements.

Wherever possible, the language follows the principle of
convention over configuration by assuming default settings
for certain aspects. For example, developers only need to
specify the individual user interface fields of an entity if the
desired presentation deviates from some automatically gen-
erated view on this entity. Due to mp®’s modularity, recur-
ring aspects can be specified once and reused several times.

This applies, amongst others, to view elements and to styles.

In the following, we briefly describe central elements of the
language, beginning with the part for describing the data
model. Figure 1 displays an example data model in mp2.
Like all of the following excerpts, it is part of a simple library
app, in which users can request to loan a book.

4.2 Model

Entities are the main language element. Like most ele-
ments, they have a name immediately following the respec-
tive keyword (line 2 in Figure 1). They have attributes of
predefined types such as String, Integer, and Date (lines 3—
5) and single- or multi-valued references to other entities (8).
Attributes and references can further be described with a
name (5), which otherwise defaults to a readable version of
its identifier. They can be specified as optional (4) instead
of being required by default. Type-specific parameters can
be used to restrict the range of permitted values. Besides
entities, wp? allows the definition of enumeration types. In
summary, the data part of the language offers the typical
elements expected to describe the data model of an applica-
tion. This helps developers while learning the language. At
the same time, unnecessary complexity is avoided.

4.3 View

The view part specifies the Ul of the app (Figure 2). The
language provides two kinds of view elements: individual
content and container. Content elements such as labels, form
fields, and buttons (lines 3—-13 in Figure 2) are grouped and
arranged inside of container elements, which are called panes
in mo?. Panes are associated with a certain layout, e.g., a
flow or grid layout, that determines how contained elements
are arranged (2). Containers may be nested. A special kind
of container often required by business apps is a pane with
tabs (16). Each of its children containers will be displayed
as a tab, accessible via a platform-specific tab bar. Most
view elements can be parametrized to achieve a desired look.
For example, labels can be styled (4) and layout parameters
influence how children are arranged. View elements can be
defined once and referenced by other view elements (17),
thus enabling modularity and code reuse. wp?’s view part
is easy to use since it utilizes well-known terms and offers
them in a concise, declarative way.

A special feature of wmp? is the ability to quickly create a
default representation for an entity type. To achieve this, a
developer can insert an AutoGenerator (5). He has to spec-
ify the entity type via a content provider (explained further
below), which mp? can infer the entity type from. It then
generates a standard representation that includes labels and
input fields for all attributes of the type. Additionally, it cre-
ates data bindings between the view elements and the data.
AutoGenerators allow developers to quickly implement an
app as long as they do not have special requirements.

4.4 Controller

The controller component of mp®’s language brings to-
gether model and view and allows to describe the behavior
of the app. It is also used to specify general properties such
as the view to show and actions to be performed at startup
(lines 5, 6 in Figure 3). Actions are a central element of
the controller. Custom actions (8-22) execute other actions,
most notably standard action types supplied by mp?. When

package org.example.library.views
FlowLayoutPane MAINVIEW (vertical) {
Label bookHeader { text “Book”
style HEADERSTYLE }
AutoGenerator bookInfoPart {
contentProvider bookProvider
Button loadBookBtn (”Load_book_from_ ISBN?")

© 00O U AW

Label loanHeader { text “"Request_ Loan”
style HEADERSTYLE }

TextInput loanEMail { label ”"Email_ address”
tooltip ”Please_provide_your_ email, ... " }

Button loanBtn (”Loan_this_book”)

}
.. // InfoView

TabbedPane TABBEDVIEW {
MAINVIEW —> Main
INFOVIEW (tabTitle “Info”)

}

style HEADERSTYLE {

21 fontSize 20 textStyle bold }

B e e e
SOWNRURWN O

Figure 2: View model of an exemplary mp® app

instantiating a standard action type, parameters control the
behavior of the specific instance. Examples are event bind-
ing, CRUD operations, data mapping, navigation within the
UI, and accessing device features such as GPS. The action
concept is the sole language element that does not follow a
declarative language style because actions describe the be-
havior of the app, albeit on a high abstraction level.

Actions can be bound to events (11-14). wp? has three
kinds of events: those resulting directly from user interaction
with GUI elements, global events, and conditional events.
User interface events occur for example when a user touches
a view element or if she uses a gesture, e.g., swiping. Global
events refer to changes in the state of the app, such as los-
ing the connection to a remote server. Conditional events
examine the internal state of the app and occur when a cer-
tain condition becomes true. This may be a failed validation
or a more complex expression combining the state of several
model and/or view elements. For this purpose, mp? includes
a concise language for boolean expressions.

A central part of mp® is the data-driven nature of the
framework. The connection of the app to local and remote
data sources is provided with content providers as the corre-
sponding language element (24-30). A local content provider
refers to a database on the device administered by the app.
Remote content providers refer to a server that provides ac-
cess via a specified interface (25, 31). Content providers
specify the type of data they provide (24), which refers to
an entity defined in the data model or a primitive type and
could be multi-valued. Filters allow to define a query string
to select only objects that match certain criteria (26). The
language offers various action types for invoking CRUD op-
erations on content providers.

The controller is also responsible for combining model and
view through data mappings. Mapping a view element to
an attribute of a content provider (17) creates a two-way
binding between the GUI field and the object managed by
the content provider. For fields mapped to a data element,
wp? implicitly assumes default validators as derived from
the data model definition. For example, fields mapped to re-
quired attributes will be checked for non-nullness. Develop-
ers are free to attach additional or replace implicit validators.
Several standard validators are included to be able to ensure
well-formed input. Examples are validators to check if input
can be interpreted as an integer or date value and regular
expression validators (18-21). Both mappings and valida-
tors are automatically inferred for auto-generated parts of
the view but can be overridden and customized.

package org.example.library.controllers
main {
appName "Library,_Application ”
... // wversion information etc.
startView TABBEDVIEW .Main
onlInitialized init

action CombinedAction init {
actions bindEvents mapFields }
10 action CustomAction bindEvents {
11 bind action loadBook
12 on MAINVIEW .loadBookBtn.onTouch
13 bind action sendLoanRequest
14 on MAINVIEW .loanBtn.onTouch
15 }
16 action CustomAction mapFields {
17 map MAINVIEW .loanEMail to loanProvider.email
18 bind validator RegExValidator
19 // simplified and erroneous regex
20 (regEx 7[a—z]+@[a—z]+\\.[a—z]+ ")
21 on MAINVIEW.loanEMail
22 }
23 ... // actions loadBook , sendLoanRequest
24 contentProvider Book bookProvider {
25 providerType someServer
26 filter first where BoOK.isbn equals
27 MAINVIEW . bookInfoPart [Book.isbn]
28 }
29 contentProvider LOANREQUEST loanProvider {
30 providerType someServer }
31 remoteConnection someServer {
32 uri “http ://...7 }

© 0N U AW

Figure 3: Controller model of an exemplary mp? app

The controller model also defines navigation paths through
the app and restrictions on the users’ navigation. This is es-
pecially important for a GUI made up of tabs, in which users
may try to change tabs at all times. Managing complex nav-
igation scenarios like this is enabled by wn?’s workflow con-
cept. It accompanies simple actions for switching views that
are also part of the language. A workflow consists of several
steps, each associated with a container element of the view
to be displayed whenever the step is active. Additionally, a
step may define conditions that have to be fulfilled before
the user of the app is allowed to go forward or backward.
An app may, e.g., require its users to enter a valid address
before leaving a tab. If an app is associated with a workflow,
the workflow controls the users’ navigation. The language
provides several actions for navigating through the workflow
that can be bound to events, such as a user swiping left.

4.5 Implementation of the Language

The language has been implemented as a single Xtext
project. The grammar of mp*’s DSL has been defined in
the grammar language of Xtext, which is an attribute gram-
mar [14] based on rules in Extended Backus-Naur Form
(EBNF) [24]. Xtext derives an implementation of the ab-
stract syntax of the language from the grammar. This im-
plementation is based on the Eclipse Modeling Framework
(EMF) [20], a framework for implementing formal (meta-)
models as Java classes. The attributes of the grammar are
used to tailor the abstract syntax as implemented in EMF. In
addition to the grammar definition of wp®’s language, sev-
eral Java methods validate values of more complex language
elements. Xtext moreover generates an Eclipse editor for the
language with helpful features such as syntax highlighting,
code completion, and validation. These features allow app
developers to quickly specify the model of their app and help
them during modeling. Furthermore, an Eclipse wizard sets
up the initial mop? project structure.

As the first step of the code generation phase, a model-to-
model transformation preprocesses (thus modifies) the in-
memory representation of the mn’ model, which has been
created by the parser. As this step deals with simplify-
ing the model for the following code generation, it operates

on the level of the language. Subsequent steps operate on
the modified model. Preprocessing serves two main pur-
poses. Firstly, it expresses implicit semantics explicitly by
using appropriate language elements. For example, it in-
serts validator bindings for requirements derived from the
data model, e.g., a not-null validator for fields mapped to
a required attribute. Secondly, it expands shorthand nota-
tions; most importantly, it replaces the AutoGenerator el-
ement with a corresponding set of view elements, together
with data mappings and validators. In this context, it is also
responsible for resolving references to reused view elements.
Preprocessing simplifies the subsequent generation because
the code generators thus deal with less variation and fewer
advanced concepts.

5. CODE GENERATORS OF mb*

The following subsections describe the implementation of
generators for Android and iOS. Due to space restrictions,
we concentrate on the conceptual mapping.

5.1 Towards Code Generation

The responsibility of the code generation phase is to cre-
ate the source code of apps out of the preprocessed model.
It must be compilable to a native app without modification
and the suchlike packaged app must be directly installable
and runnable on the respective mobile platform. This re-
quires transforming the declarative model written in wmp?®’s
language into source code according to the target SDK.

The development of the generators of mp? was based on
a reference implementation as proposed by [19]. The refer-
ence implementation consisted of prototypical apps for An-
droid and iOS that served as a “blueprint [...] for code to
be generated” [19, p. 27]. It was kept minimal as far as
domain functionality, i.e., parts differing between apps, was
concerned and concentrated on implementing architectural
elements on both mobile platforms, which would not change
for different apps. Thus, we identified static, generic parts,
which are identical for all apps on a platform regardless of
the model. In contrast, dynamic content depends on the ac-
tual app and its mp? model. It, thus, needs to be generated.

The set of static parts for apps of one mobile operating
system is part of the target platform. This term refers to
the environment in which generated code will be executed,
consisting of the operating system and its interfaces, exter-
nal libraries, and mp?’s static content. The dynamic con-
tent resorts to the elements of the target platform, as it
will often instantiate or subclass its elements and use its in-
terfaces to access platform-provided functionality. The exis-
tence of a defined platform for each mobile system, especially
the mp?-specific elements, notably simplifies code generation
compared to generating each app from scratch. mn’ defines
target platforms for Android, iOS, and the backend server.

Generated apps implement the architecture outlined in the
previous sections. Each code generator has to account for
particularities of the respective mobile platform and find a
suitable counterpart for all concepts of mp®’s language. It
has to make the declarative concepts explicit by expressing
their semantics with means of the target platform, mainly
the object-oriented and imperative programming language
endorsed by the mobile platform. A particular challenge are
concept mismatches between Android and iOS. If the equiv-
alents of a language concept on each platform differ signif-

-
11 Library Application Main Info
v — Book

Book Title Model-driven Software Development

Title Model-driven Software Development Author Thomas Stah!

——— ISBN 978-0-470-02570-3]
Load book from ISBN
1SBN. 978-0-470-02570-3 Request Loan

Email address

A

Loan this book

Load book from ISBN

Request Loan

invalid@mail

Loan this book

Figure 4: Comparison of Android (left) and iOS
library app (right), as generated by mp® from the
model in Figures 1-3 (screenshots slightly modified
to save space)

icantly, the code generator has to bridge the gap in order
for them to behave similar on a fundamental level while still
respecting the look & feel of the mobile platform. Examples
for such differences include the life cycle concept as well as
the presentation of tabbed applications. Hence, the gener-
ation step allows mb? to support more than just the lowest
common denominator of Android and iOS. The comparison
in figure 4 shows that both apps have a native user interface
while offering the same functionality.

5.2 General Implementation

mp? registers a build participant in Eclipse that is called
when a mp? project is built after saving a model file. After
preprocessing, it executes all three code generators. Gen-
erators have been implemented with Xtend [26], a Java-like
programming language with a modernized syntax, additional
features such as lambda expressions, and template expres-
sions. The latter are especially helpful for generating read-
able code, because they facilitate working with multi-line
and highly dynamic strings while maintaining formatting.

As mp?’s generators are responsible for transitioning from
a declarative model to object-oriented, imperative code, their
implementation follows the structure of the target applica-
tion. Generally speaking, one part of a code generator is
responsible for generating one kind of classes. Hence, it does
not necessarily cover only one part of the language, as there
can be no one-to-one correspondence. Rather, it has to inte-
grate information from several sources. Nevertheless, there
is a high degree of locality because of the separation of con-
cerns that is present in language and architecture due to the
MVC pattern. This considerably simplifies code generators.

5.3 Android Generator

The o’ library that is part of the Android target plat-
form implements central parts of the overall architecture.
This includes the event bus, workflow management, and data
mapping. For each, the library defines the central class that
controls the respective behavior and it offers classes to be in-
stantiated in generated code. Furthermore, it provides base
classes such as Entity, CustomAction, and ContentProvider
that will be extended by generated app-specific classes to re-
flect the specifications of the model. The library also defines
additional GUI elements for those content elements offered
by wn? that have no direct correspondence in Android, for
example input fields for time stamps. The Android genera-
tor targets Android version 3.0 and upwards.

The code generator transforms the data model into plain
(old) Java objects (POJOs) with annotations to control the

serialization into JavaScript Object Notation (JSON). JSON
is used to store data locally and for backend communication.

The view model is represented as Android-specific layout
files in XML. In order to create a native look & feel, the
generator adheres to Android’s design guidelines [1]. For
most content elements, corresponding Android UI compo-
nents such as Button, Text Field or Date Picker are avail-
able. Complex elements of the view model are built up from
basic Android components. For example, mp?’s input fields
that allow users to select a time stamp combine date and
time pickers from Android. Regarding container elements,
Android’s Linear Layout provides a good match for mp®’s
flow layout. A Table Layout is used to emulate mo®’s grid
layout (Android’s Grid View is supposed to only be used for
displaying dynamic data in a grid). Tabbed layouts are im-
plemented via an Action Bar, which is Android’s preferred
concept for this kind of UI. The individual tabs are imple-
mented and added to the action bar as so-called fragments,
which are exchangeable modules of an user interface. Each
top-level view container of the model is implemented as a
separate activity as recommended by Android’s guidelines.

While the Ul is thus defined separately in XML, the code
generator creates a controller class in Java for each fragment
and activity. These controllers react to the Android-specific
life cycle. They are responsible for initializing the view and
for registering event listeners to the central event bus imple-
mented in wp?’s Android library. Most functionality of the
controller component is already provided by that library and
needs to be instantiated and adapted by the app at hand.
An application class manages app-wide initializations, e.g.,
of content providers, and executes start-up actions. The
generated code contains a subclass for each custom action
specified in the model. Such a class contains the statements
corresponding to the tasks that ought to be performed by the
action. They either call other generated actions or actions
defined in the library. Further classes generated as part of
the controller component deal with workflow steps and con-
tent providers. Data mapping and validation are handled by
referring to appropriate actions of the library, which resort
to functionality implemented in wp?’s library for Android.

In addition to generating the already mentioned XML and
Java files for the different MVC components, the Android
code generator copies static content and creates Eclipse-
specific project files. The generated code can be opened as
an Eclipse project, allowing developers to compile it using
the standard Android developer tools.

5.4 1iOS Generator

wp?’s library for the iOS platform is responsible for func-
tions similar to the Android library and has a similar design.
A particularity of Objective-C compared to Java is the sep-
aration of declaration and implementation into header and
implementation file. This is reflected in the code generator,
as each generated class is split into these two files. The iOS
generator targets iOS in version 5.1. As iOS apps should fol-
low a MVC approach anyway, the separation as prescribed
by mp?’s architecture is straightforward to implement.

The iOS code generator uses Apple’s Core Data frame-
work [5] to implement the data model on iOS. Therefore, it
generates an Objective-C class for each entity and a single
XML file defining entities and their relationships.

Each top- or tab-level container element of the view model

is transformed to a view class in Objective-C that builds up
the respective user interface based on the UIKit framework
from i0S’ Cocoa Touch. Instead of using them directly, all
UIKit view elements are wrapped in widgets that enhance
their functionality and encapsulate often needed functions to
simplify the generated Ul classes. These widget classes are
provided by the iOS mp? library, just as the layout classes
that implement the arrangement of view elements in iOS.

In contrast to Android, the controller logic on iOS requires
no distinction between tabs and other views. Each gener-
ated view is accompanied by a corresponding controller that
initializes view and data. A base class for controllers pro-
vides most of this functionality, leading to thin view-specific
controllers. An iOS Tab Bar Controller manages tabbed
applications to achieve an i0S-specific look & feel (see Fig-
ure 4). As on Android, a central initialization class is re-
sponsible for setting up the app after start-up. It connects
controllers to views, prepares content providers, and config-
ures the app. At last, it transfers control to the initial actions
defined in the model. Custom actions are implemented as
subclasses similar to Android. A list of statements handles
all tasks that are part of the action by calling the appropri-
ate generated or library-provided action. Content providers,
event handling, workflow management, and validation are
entirely implemented in wp?®’s iOS library and only need to
be instantiated and configured by generated code.

The iOS code generator also generates a project file with
the specific format expected by Xcode. The implementa-
tion of this part required considerable effort due to the non-
standard syntax of Xcode project files', their complicated
format, and because therein all generated files have to be
listed and logically grouped in directories.

5.5 Backend Generator

Since the backend is only used for storing and retrieving
data, the backend generator deals with the data model only.
It creates a Java EE 6 application that can be run on an
application server. The application provides a Web service
that implements a REST-based interface [7]. Thereby, the
backend defines the API by which remote content providers
access data on servers according to the data model. Any
server adhering to this API can be used as the target of
a remote provider connection. The generated backend can
serve as a quick starting point for a custom implementation
of the server, but is also fully functional on its own with
respect to all CRUD operations. The generator creates an
implementation of the data model based on the Java Persis-
tence API (JPA) as well as Enterprise Java Beans (EJB) for
accessing and manipulating the corresponding database.

The actual Web service layer uses the Java API for REST-
ful Web Services (JAX-RS) for specifying and implement-
ing its interface. It provides methods for retrieving data
via HTTP GET requests, creating and updating via PUT, and
deleting via DELETE. The entity name is part of the request
path, and filter queries are to be passed in the query portion
of the path. Data is transferred in JSON format.

Additionally, the backend generator creates an FEclipse
project file and several Java EE configuration files in XML
that allow rapid deployment of the application.

'Xcode project files neither use XML nor a similar format,
but Mac OS X property lists (p-lists).

6. RELATED WORK

In the wide sense, our approach has to be compared to
other approaches for cross-platform app development. In the
narrow sense, it has to be distinguished from other MDSD
app development frameworks. Finally, some tools exist that
can have some similarities while following different ideas.

Cross-platform approaches fall into four different catego-
ries [9]: mobile Web app, hybrid apps, runtime environ-
ments, or generative approaches. Web apps are built with
Web technologies (HTML, CSS, and JavaScript) and are
accessed via mobile browsers. They lack access to device-
specific features, except for a limited set that will be made
available with HTML5 [11]. Hybrid apps, for example cre-
ated with Apache Cordova [2] (formerly known as Phone-
Gap), package a Web site with a native component that
provides access to device features. Both, Web and hybrid
apps, look and behave like Web sites, because the browser
engine is responsible for rendering the UL wmn? apps instead
have a native look & feel. There are some approaches such
as mgwt [18] or vaadin TouchKit [21] that try to mimic a
native Ul with Web technologies. However, they always face
the fundamental limitations of running in a Web environ-
ment. Almost, but not exactly resembling a native app can
be seen as a kind of uncanny valley [8]. Hence, mp® is a
better match if customers expect a native look & feel.

Approaches such as Titanium [3] that use a separate run-
time environment are, in principle, able to build up the Ul
with native components. On each target platform, an in-
terpreter at runtime interprets the source code of the app
written in a scripting language. However, since these imper-
ative languages have a low abstraction level, developers need
to write a large amount of code compared to the concise and
declarative mn? models. Furthermore, such approaches were
found to lack features and to have performance problems [9].
All aforementioned categories lack a direct native integration
into the platform, because they use some kind of intermedi-
ate layer. Generative approaches create completely native
apps out of a common code base. Besides model-driven
approaches, examined below, this category includes tools
that translate general-purpose programming languages. The
cross-compiler XMLVM [25] transforms Android apps writ-
ten in Java into Objective-C, but is still in very early stages
and has a low abstraction level. J20bjC [12] also trans-
lates Java into Objective-C, but does not consider platform-
specific functionality or the UI, so that only business logic
can (partly) be shared among Android and iOS. J20bjC
might be worthwhile to integrate with mp?.

The model-driven applause [6, 4] provides a DSL for spec-
ifying apps. applause is based on Xtext and consists of code
generators for i0OS, Android, Windows Phone 7 and Google
App Engine. However, it appears like there has not been
much development progress lately. The developers acknowl-
edge that applause’s status is prototypic and far from pro-
ductive usage [4]. applause is different to wmp? in particular
due to our domain-specific focus (on business needs). More-
over, applause is mostly restricted to displaying information.

AXIOM [13] also generates apps from a DSL. However,
since AXIOM’s DSL is based on the programming language
Groovy and resembles features of UML, it has a rather tech-
nical appeal. Its features were derived in a bottom-up man-
ner from the functions provided by mobile devices, rather

than from business requirements. In contrast to wp?, its
transformations have several intermediary steps requiring
additional user decisions and are hence not fully automated.

While we will not got as far as to either suggest Web
apps or native apps and nothing in between [8], no cross-
platform framework yet replaces native app development
without caveats [9]. mb? in contrast has a limited applica-
tion domain but provides truly native apps in every aspect.

While our approach abstracts from classical programming,
it is a good idea to make it accessible to people with no
technical background. Thus, work such as [10] is also related.

7. DISCUSSION

We evaluated mp? in projects with our industry partners.
One project was an insurance tariff calculator as a real-world
proof-of-concept, another one the library application that
served as a simplified example throughout this paper.

We found mp? to be suitable for developing mobile busi-
ness apps, as was the goal of our structured, top-down ap-
proach. Our own experience and feedback we got from part-
ners prove that the scope of mp? is useful and allows to
develop a large category of simple and complex apps. The
increased abstraction level frees app developers from tedious
low-level programming in Java or Objective-C, respectively,
and from having to delve deeply into the specifics of each
SDK. wp? enables a quick development process; an initial
version and subsequent iterations require considerably less
time and effort compared to separate native development.
The DSL that forms the core of mp?® provides several bene-
fits: it follows a clear architectural separation, has a declara-
tive style simple to understand, requires to specify only what
is necessary, and lends itself to a modular definition of apps.
Furthermore, being a textual language, it avoids problems
typically surfacing when using graphical DSLs [17] and is
particularly well-suited for collaborative development.

The library app demonstrates how quickly requirements
can be transformed into working Android and iOS apps con-
nected to a server. The actual implementation as a wp?
model took less than half an hour. The tariff calculator is a
comparatively large application with extensive server com-
munication and more complex interaction scenarios. wmn? en-
abled rapid development of initial executable versions that
implemented parts of the requirements. Subsequent itera-
tions gradually included more use cases into the model, pro-
viding immediate feedback to the developer. To illustrate
the savings from modeling with wp® compared to manual
implementation, we surveyed the number of lines of code
(LOC) of models on the one hand and generated apps on
the other hand. The latter should reasonably approximate, if
not underestimate, the LOC that a manual implementation
would require. While LOC are not a perfect indicator of de-
velopment effort, we argue that a comparison of LOC for the
same application nevertheless provides insights. The library
application required a model of 109 lines, from which the
Android generator generated 1359 LOC Java and 183 LOC
XML (i0S: 1081 LOC Objective-C, 21 LOC XML; backend:
478 L.OC Java, 57 LOC XML). For the tariff calculator, sim-
ilar magnitudes of difference apply: 709 LOC in wp? lead to
10110 LOC Java and 2263 LOC XML for Android; 3270 LOC
Objective-C and 64 LOC XML for iOS; and 1923 LOC Java
and 57 LOC XML for the backend. This does not even reflect

the additional savings due to the platform-specific libraries
provided by wp?, which implement common functionality
and simplify the generated code. Even after discounting for
the difficulties with the LOC measure, these exemplary num-
bers clearly show that wn? significantly reduces the LOC to
be written or, with mn?, modeled.

Besides the development process, we also evaluated the
apps generated by mp®. They exhibit a truly native look
& feel, because, as native applications, they directly use the
native Ul elements. Additionally, great care was taken to
ensure that all mp? concepts are transformed in a platform-
specific manner. For example, the layout of tabbed interfaces
differs considerably in generated Android and iOS apps in
order to ensure a native experience for users.

As a novel and complex approach to cross-platform de-
velopment, mp? currently has some limitations. Its scope is
deliberately focused on data-driven business apps with a Ul
mainly consisting of form fields. Regarding business logic,
mwp? supports typical scenarios, others have to be handled on
the server up to now. In its current state, it provides access
only to GPS, but not to other device-specific features.

8. CONCLUSIONS

This paper introduced mp?, our approach for model-driven
cross-platform app development. At first, general concepts
were explained. We then described language and generators
in detail. Based on the study of related work, we discussed
our framework. While not being a general purpose tool that
can be used for any kind of app, it has proven to be feasible
for typical business apps even in its prototypic state.

We made several contributions. Firstly, a detailed intro-
duction into possibilities and challenges for developing apps
in a model-driven way was given. Secondly, our novel ap-
proach has been introduced. Thirdly, we highlighted details
of mp? that are relevant beyond its application in our frame-
work; the insights we got may prove helpful both for other
MDSD and further app development approaches. Fourthly,
we gave an abstract set of features needed by typical busi-
ness apps which at the same time are reflected in mp®’s lan-
guage. Fifthly, we discussed our approach based on real-
world projects and showed for which scenarios it is feasible.

Our work is not finished. Development of mn? will con-
tinue by stepwise expanding the class of supported appli-
cations, aiming at eventually covering most apps that base
on standardized interface elements. Moreover, we will assess
the framework theoretically and evaluate it with corporate
partners. Another goal is to better understand in which sit-
uation what kind of framework support is needed.We would
like to incorporate non-linear workflows and integrate the
generation gap pattern [22] for advanced actions, conditions,
etc. This would allow modifications to generated apps that
are not lost on regeneration. At the moment, we do not pro-
vide any such means, because we intended to fully automate
the platform-specific parts. A more advanced aim is to allow
the specification of more business logic in models.

9. ACKNOWLEDGMENTS

We would like to thank viadee Unternehmensberatung
GmbH for supporting the development of wp?®. Implementa-
tion was mainly carried out by master students Séren Evers,
Klaus Fleerkotter, Daniel Kemper, Sandro Mesterheide, and

Jannis Strodtkotter, whose effort is highly appreciated.

10.

(1]

(10]

(11]
[12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]
20]

[21]
(22]

23]

24]

[25]
[26]
27]

REFERENCES

Android Open Source Project. Android design, 2012.
http://developer.android.com/design/index.html.
Apache Cordova, 2012.
http://incubator.apache.org/cordova/.

Appcelerator, 2012. http://www.appcelerator.com/.
applause, 2012. https://github.com/applause/.

Apple Inc. i0OS Data Management, 2012.
https://developer.apple.com/technologies/ios/data-
management.html.

H. Behrens. MDSD for the iPhone. In Proc. of
OOPSLA, 2010.

R. Fielding and R. Taylor. Principled design of the
modern web architecture. ACM Transactions on
Internet Technology (TOIT), 2(2):115-150, 2002.

M. Fowler. CrossPlatformMobile, 2011. http://
martinfowler.com/bliki/CrossPlatformMobile.html.

H. Heitkotter, S. Hanschke, and T. A. Majchrzak.
Comparing cross-platform development approaches for
mobile applications. In Proc. 8th WEBIST, 2012.

H. Hopfner et al. Towards a target platform
independent specification and generation of
information system apps. Softw. Eng. Notes,
36(4):1-5, 2011.

HTMLS5, 2012. http://www.w3.org/TR /html5/.
J20bjC, 2012. https://code.google.com/p/j2objc/.

X. Jia and C. Jones. AXIOM: A model-driven
approach to cross-platform application development.
In Proc. 7th ICSOFT, 2012.

D. E. Knuth. Semantics of context-free languages.
Theory of Computing Systems, 2:127-145, 1968.

I. Kurtev et al. Model-based DSL frameworks. In
OOPSLA 06, 2006.

J. W. Lloyd. Practical advantages of declarative
programming. In Joint Conference on Declarative
Programming (GULP-PRODE’94), 1994.

M. Mernik, J. Heering, and A. Sloane. When and how
to develop domain-specific languages. ACM computing
surveys (CSUR), 37(4):316-344, 2005.

mgwt, 2012. http://www.m-gwt.com/.

T. Stahl and M. Volter. Model-driven software
development. John Wiley & Sons New York, 2006.

D. Steinberg et al. EMF: Eclipse Modeling Framework,
2nd Edition. Addison-Wesley Longman, 2009.

vaadin TouchKit, 2012. https://vaadin.com/touchkit.
J. Vlissides. Pattern hatching: Generation gap, 1996.
http://www.research.ibm.com/designpatterns/pubs/gg.html.
J. White, D. C. Schmidt, and A. Gokhale. Simplifying
autonomic enterprise java bean applications via mdd.
In Proc. 8th MoDELS, 2005.

N. Wirth. What can we do about the unnecessary
diversity of notation for syntactic definitions?
Commun. ACM, 20(11):822-823, Nov. 1977.
XMLVM, 2012. http://www.xmlvm.org/.

Xtend, 2012. http://www.eclipse.org/xtend/.

Xtext, 2012. http://www.eclipse.org/Xtext/.

