
50    COMMUNICATIONS OF THE ACM    |   JANUARY 2019  |   VOL.  62  |   NO.  1

contributed articles

DESIGNERS INCREASINGLY LEVERAGE  autonomous 
software tools that make decisions independent of the 
designer. Examples abound in virtually every design 
field. For example, semiconductor chip designers 
use tools that make decisions about placement and 
logic checking. Game designers rely on software that 
generates initial drafts of virtual worlds. Autonomous 
tools employ artificial intelligence methods, including 
machine learning, pattern recognition, meta-heuristics, 
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 key insights
˽˽ Autonomous tools are able to generate 

remarkable design outcomes, but 
designers using them also need to change 
the way they do their design work. 

˽˽ Designing with autonomous tools requires 
that designers understand and actively 
interact with the “mental models” of the 
tools, in addition to the design artifact 
and the design process, what we call the 
“triple loop” model of learning. 

˽˽ Designers working with autonomous 
tools need to build capabilities 
described here in terms of framing, 
evaluating, and adjusting to navigate 
this new design process. 
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and evolutionary algorithms to gen-
erate design artifacts beyond any hu-
man’s capabilities. 

A naïve view suggests these tools will 
someday replace human designers in 
the design process. An alternative per-
spective is that humans will continue 
to play an important role but also that 
this role is changing. To account for the 
changing role of humans in design pro-
cesses powered by autonomous tools, 
we describe in this article a “triple-loop 
approach” to human-machine learn-
ing. Increasing amounts of design ac-
tivity are most certainly being carried 

out by autonomous tools, but humans 
must still actively frame, evaluate, and 
adjust the “mental” models embed-
ded in autonomous tools, in the form 
of algorithms.a Organizations employ-
ing autonomous tools in their design 
processes must thus account for these 
activities in their design processes. 

a	 We say “mental model embedded in an au-
tonomous tool” to indicate that just as hu-
man designers have mental models that guide 
their design activity, including their use of 
tools, autonomous tools also have models that 
guide their design activity. Both types of model 
change over time.

In what follows, we describe our 
triple-loop approach, followed by illus-
trative examples from research into the 
design of semiconductors, video games, 
software interfaces, and artificial intelli-
gence. We conclude by identifying prac-
tices that enable designers to frame, 
evaluate, and adjust the mental models 
embedded in autonomous tools. 

Design as Triple-Loop  
Human-Machine Learning 
Design processes are a form of knowl-
edge-intensive work that relies on de-
signers’ capacity to learn. In his semi-
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and those embedded in autonomous 
tools as master programs for design 
activity thus capture a mutual learn-
ing process, suggesting a third loop in 
the classic model of the design process 
(see Figure 2). 

The first loop in the triple-loop 
model is similar to the original loop 
in the double-loop model, involving 
designers and tools interacting to 
generate design outcomes. However, 
in the triple-loop model, it is the tool 
that primarily generates the design 
alternatives. A given configuration of 
the tool generates alternatives from 
a set of input parameters and then 
evaluates them according to a set of 
predefined criteria. 

The second loop can take two alter-
native forms—human learning or ma-
chine learning—as in Figure 2, loop 2a 
and loop 2b. From a human perspec-
tive, the second loop involves the hu-
man designer evaluating the alterna-
tives and modifying input parameters, 
tool settings, and evaluation criteria 
for a given design problem in order 
to run the next round of generating 
design alternatives. The second loop, 
from a machine perspective, involves 
the program learning from designer 
feedback in the design process in order 
to modify itself and improve its model 
so it can generate better alternatives in 
subsequent rounds of design activity. 

The third loop involves human 
designers learning about the men-
tal model embedded in the tool and/
or the tool learning about the human 
designers’ mental models—through 
either explicit feedback or analyzing 
the usage patterns of the human de-
signers. The machine models of de-
signers are sometimes called “user 
models.”1 When machines run learn-
ing algorithms, the human designers 
may not fully understand the compu-
tations. What they thought the tool 
would do may or may not be what it 
actually does or was even designed 
to do, though designers collect feed-
back that can help them align their 
mental models and the mental mod-
els embedded in the tool (such as by 
adjusting the algorithm used). This 
process of learning about the mental 
model embedded in the autonomous 
tool and modification of the tool con-
stitutes a second meta-level of learn-
ing during design processes involving 

nal work, Chris Argyris2,3,4 explained 
how humans, in knowledge-intensive 
work, follow a double-loop process of 
learning. In the context of design work, 
the first loop involves learning about 
the design artifact. As designers experi-
ment with alternatives, they correct er-
rors and respond to feedback on design 
results (see Figure 1, loop 1). The sec-
ond loop involves a designer’s reflec-
tion on the ongoing process of design. 
Over time, designers learn, through re-
flection, to adjust their approaches and 
discover new processes and perhaps in-
corporate new tools that help them ex-
pand their thinking around the process 
of design. The second loop captures 
meta-level learning about the design 
process (see Figure 1, loop 2), highlight-
ing how designers reflect on the mental 
models—goals, cognitive rules, and 
reasoning—they apply. 

Triple-loop human-machine learn-
ing occurs whenever humans and 
autonomous computational tools in-
teract in generating design outcomes. 
It is important for designers to under-
stand how their own mental models in-
teract with mental models embedded 
in the logic of autonomous tools. This 
process is distinct from conventional 
design work where tools are limited 
to supporting ongoing design tasks 
but do not play an independent role in 
shaping design outcomes. 

Argyris calls mental models “mas-
ter programs.” In the case of design-
ing with autonomous tools, the mas-
ter program of the designer—the 
“designer’s mental model”—may not 
be aligned with the master program of 
the autonomous tool, or “autonomous 
tool mental model,” for a variety of rea-
sons, including, for example, that the 
design activity usually involves more 
than one person; the designer using 
the tool is probably not the same per-
son who programmed the tool; mul-
tiple designers may have different con-
ceptions about what a master program 
does; and these conceptions may differ 
from what the programmers intended. 
Moreover, programmers may move on 
to other projects, along with the de-
signers who originally informed the 
design of the tools; increasingly, nei-
ther the tool programmers nor the de-
signers understand the implications of 
their decisions on what the tool is able 
to do. The mental models of designers 

It is important  
for designers  
to understand how 
their own mental 
models interact 
with mental models 
embedded in  
the logic of 
autonomous tools. 
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change the parameters interactively 
after evaluating design outcomes. The 
developers learn about the effects of 
the mental models embedded in the 
tools, as well as the designers’ mental 
models. This involves learning about 
the specific assumptions of the design-

autonomous tools. Moreover, the tool 
may change its own model as it relates 
to what the human wants and how the 
human perceives the tool; this may 
result in changes in the interface or 
the design parameters being applied. 
Much like two people with different 
mental models learn from each other 
and work together to reconcile their 
mental models, autonomous tools 
and humans likewise have different 
models related to design goals and 
processes they may seek to reconcile 
through various loops of learning. 

Illustrations 
Here, we provide four examples of 
triple-loop human-machine learning, 
including in semiconductor design, 
software interface design, video game 
design, and artificial intellgence de-
sign. They highlight different aspects 
of the interaction between designers 
and autonomous tools. 

Semiconductor design at Intel and 
AMD. Since the early 2000s, a new 
breed of tooling strategies based on 
genetic algorithms has emerged in 
semiconductor design,6 commonly 
called “physical synthesis.” Such tools 
offer a powerful way to improve the 
productivity of physical chip design 
by autonomously generating full lay-
out solutions for whole sections of a 
chip (such as caches and USB ports). 
Major semiconductor manufacturers, 
including Intel and AMD, use the pro-
gram-synthesis approach to generate 
full-layout designs of particular chip 
sections for a given set of parameter 
values. A program-synthesis designer 
starts each design cycle by defining 
a new set of design-parameter values 
that specify directions and constraints 
for the design search to be carried out 
by the tool (see Figure 3). When a solu-
tion is found through such search, the 
tool autonomously delivers a complete 
design solution for the given layout 
problem. After each such cycle, the 
designer manipulates the design by 
modifying the parameters based on 
the design outcomes generated during 
the previous cycle. Designers refer to 
the automated generation of design al-
ternatives as “experiments” for a given 
set of parameters and interact with the 
algorithmic results in order to evaluate 
alternatives, given the input param-
eters and design goals (see Figure 2, 

loop 1). Designers then learn from the 
experiments in a way that helps them 
improve the input parameters for the 
next round of experiments, as in Figure 
2, loop 2. Developers of the algorithms 
interact with the chip designers in or-
der to learn how the chip designers 

Figure 1. Double-loop learning; based on Argyris.3,4 
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Figure 2. Triple-loop human-machine learning with autonomous tools. 
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Figure 3. Computational design tool for semiconductor design. 

“Quite Universal Circuit Simulator” is hosted on Sourceforge (http://sourceforge.net/projects/qucs/) 
and made available under the GNU General Public License version 2.0.
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learning provided a solution, enabling 
Adobe Labs’ developers to reduce this 
high-dimensionality problem to a 
three-dimensional space comprehen-
sible by human designers. Moreover, 
the three-dimensional space was con-
trollable through three slider bars. Us-
ing this intuitive interface, designers 
can more easily configure the model 
to match a given image. The example 
shows that autonomous tools do not 
have to correspond precisely to the 
mental models of humans. Instead, 
they often provide an expressive but 
low-dimensional interface. Humans 
learn through interacting with this 
interface, and the machine and the 
human both participate in learning. 
The interface amplifies the ability of 
a human designer to explore a large 
design space. In this design process, 
the autonomous tools create an inter-
face a designer can use to generate al-
ternative outputs, as in Figure 2, loop 
1. Through practice, designers learn 

how to control the outputs (see Figure 
2, loop 2). Over time, the designer’s ex-
perience can be used to refine the in-
terface, as in Figure 2, loop 3. In such 
user-interface design, the machine-
learning system begins with the goal 
of reducing the dimensionality of the 
interface from 100 dials to three slider 
bars. Although the mental model of the 
human can never be entirely aligned 
with the underlying mental model em-
bedded in the tool due to the limits of 
human cognition, the new interface 
provides a level of abstraction neces-
sary for effective learning. 

Designing Landscapes at Ubisoft. 
Tools have a long track record in vid-
eo game development. Algorithmi-
cally generated content may include 
a variety of game elements, including 
textures, buildings, road networks, 
and component behaviors like explo-
sions.7 In extreme cases, autonomous 
tools are able to generate large parts 
of the game content that only later are 

ers while rooting out inefficiencies of 
the tools by updating and rewriting the 
source code for the tools, as in Figure 2, 
loop 3. Tool developers then carefully 
calibrate the mental models embed-
ded in the autonomous tool to fit with 
the mental models of the designers. 

Software interface design at Adobe 
Labs. Interface designers today make 
extensive use of machine learning 
to improve interface designs. For ex-
ample, researchers at Adobe Labs cre-
ated tools intended to control complex 
user processes.13 In particular, visual 
designers wanted to be able to control 
procedural models that render com-
plex shapes (such as trees and bushes) 
by growing them artificially from digi-
tal seeds into mature plants. Designers 
had difficulty harnessing these models 
because the array of approximately 100 
parameters controlling such a growth 
process had to be manipulated in 
unison, thereby making it an incred-
ibly complex problem space. Machine 

Figure 4. Procedural generation in Ghost Recon Wildlands; source: Ubisoft. 
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and outputs wired to a joystick control-
ler.10 The system used a reinforcement-
learning algorithm to train itself. After 
training, it scored as well or better than 
humans on 29 out of 49 Atari games. 
But some games proved challenging 
for the algorithm, and games that re-
quire a player to acquire objects early 
in the game that will prove useful only 
near the end were especially difficult 
for the algorithm. Taking such deci-
sions across long time scales is more 
difficult to learn than are subsecond 
reactions to, say, attacking enemies. 
As a result, the designers of the system 
made modifications to the training al-
gorithm that significantly increased 
its performance on difficult games, 
though they still require hundreds of 
hours of training.8 In this case, when 
the algorithm is exposed to gameplay 
events, it learns, as in Figure 2, loop 1). 
When the machine fell short on cer-
tain games, the designers adjusted the 
training regimen (see Figure 2, loop 2). 
In creating the system, the designers 
first created an environment tools ex-
plore and receive feedback on, similar 
to the way humans interact with the 
physical environment. 

At a higher level of abstraction, 
the process can be viewed as part of 
a meta learning process in which hu-
mans create autonomous machines, 
monitor their progress, and iterate 
across multiple configurations of the 
machines while ultimately confront-
ing the limits of both machine and hu-
man intelligence (see Figure 2, loop 3). 
The shortcomings of the algorithm in-
deed pose a challenge some research-
ers argue are best addressed through 
techniques developed in cognitive sci-
ence.9 Even the use and development 
of autonomous systems are examples 
of triple-loop learning, as these sys-
tems need to be designed, monitored, 
and improved by humans. 

Designers and Triple-Loop  
Design Activities 
Traditional designers intentionally 
craft artifacts by applying their deep 
knowledge of materials and tools, 
moving them forward toward a pre-
ferred, future condition.11 However, 
autonomous tools change the role 
of designers, including focus, activi-
ties, and required skills. Designers 
are increasingly focused on manag-

combined with specific handcrafted 
elements. Hence, the interplay of auto-
mated and manual generation of con-
tent is crucial to game development, 
as humans are looking for a rich and 
unique experience, and undirected 
automated generation could lead to re-
sults that are not perceived as authen-
tic. Ubisoft’s Ghost Recon Wildlands, an 
action-adventure game originally pub-
lished in 2017, is an example in which 
designers used autonomous tools to 
generate the game environment.12 De-
signers handcrafted elements in the 
game environment while algorithms 
procedurally generated much of the 
background content. In this process, 
the tools would generate, say, large 
amounts of detailed terrain; the Fig-
ure 4 screenshots show how the terrain 
evolved as a road network was added 
procedurally, based on a few waypoints 
on a landscape. The designers would 
then modify the terrain further and 
create extra detail. 

Some areas of the game environ-
ment were still generated in a tradition-
ally manual fashion. The combined 
process required selecting appropri-
ate tools and models that would align 
with the game idea in a way that was 
shared by a team of Ubisoft designers 
and developers. This example of “hy-
brid” development highlights how, 
although the tool autonomously gen-
erated significant portions of the de-
sign, designers still had a significant 
role in the design process. In such a 
“hybrid” model of autonomous de-
sign, the tool and the designer jointly 
generate the design in a given prob-
lem space (see Figure 2, loop 1); based 
on feedback generated by the tool, de-
signers make adjustments and design 
decisions (see Figure 2, loop 2); and 
the team learns holistically from the 
experience of using the tool, reflecting 
on the alignment of their mental mod-
els with the outcomes of the use of the 
tool (see Figure 2, loop 3). 

Artificial intelligence design and At-
ari games. Many researchers today en-
gage in designing artificial intelligence 
solutions, using machine learning in 
their solutions. For example, research-
ers recently created an artificial intel-
ligence system to play Atari games. 
The experimental system was a deep 
convolutional neural network with 
inputs wired to a video game display 

Tool developers 
then carefully 
calibrate the mental 
models embedded 
in the autonomous 
tool to fit with  
the mental models 
of the designers.  
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grees to which control shifts toward 
the tools and away from the designer 
(see Figure 5). 

Rather than incrementally build 
and modify design artifacts, designers 
become engaged in new design prac-
tices that fall into three categories: 
framing, evaluation, and adjustment. 

Framing. “Framing” occurs as de-
signers, based on their mental mod-
els, construct their understanding 
of the problem situation or task and 
thus how the tool, with its underly-
ing, embedded mental model, should 
be used, thereby making decisions 
about the solution space. The actual 
design activity is thus informed by 
both the mental model of the design-
er and the mental model embedded 
in the autonomous tool. 

Framing in the examples outlined 
earlier notably involves specification 
of varying sets of inputs that can in-
clude numerical and non-numerical 
variables, thus enabling the tool to 
do its work. This is the process of 
“parameterization,” which requires 
a deeper understanding of the tool, 
as well as an intuitive understand-
ing of both the problem space being 
worked on and the solution space 
of the tool so hypotheses can be for-
mulated with regard to what sets of 
inputs will have the desired design 
consequences. Parameterization thus 
precedes the actual design process 
(see Figure 2, loop 1) and follows the 
evaluation of the design product. 

Evaluation. Once the autonomous 
tool has generated outcomes, these 
outcomes must be evaluated to in-
form decisions about further design 
actions (see Figure 2, loop 1), as well 
as to inform the mental model of the 
designers (see Figure 2, loop 2a) and 
the mental models embedded in au-
tonomous tools being used (see Fig-
ure 2, loop 2b). While loop 1 activi-
ties lead to a different use of the tool 
through, say, a different set of input 
parameters, loop 2 activities lead to 
changes in mental models that affect 
future design decisions. 

As parameters can be changed and 
various design alternatives explored, 
autonomous tools allow more itera-
tions of the design outcome and thus 
for experimentation. For instance, 
Ubisoft’s video game Ghost Recon Wild-
lands presents an experience to users 
that is possible only because a rela-
tively small team of designers could ex-
periment with various computationally 
generated design outcomes. 

Because the algorithmic process-
es of autonomous tools are typically 
complex, they tend to overwhelm hu-
mans’ bounded cognitive abilities. 
It is difficult for human designers to 
predict what the tools will produce, so 
they must be able to evaluate the de-
sign products generated by the tool. 
Such evaluation may range from spe-
cific aspects of the outcome (such as 
elements in the game space of a video 
game) to some holistic outcome (such 
as in the process of generating the lay-
out for a semiconductor chip). Once 
a tool has been run, and has gener-
ated outputs, designers evaluate the 

ing tools—and their embedded men-
tal models—and understanding the 
often-surprising behaviors of tools as 
they generate design artifacts. This 
new type of designer needs a better 
understanding of the tools, in addi-
tion to a detailed understanding of 
the underlying anatomy of the artifact 
to be designed. The locus of control 
of the design process is moving away 
from the designer toward the tool and 
its underlying model. An important 
causal force behind the tool is the tool 
designer who defines and implements 
the algorithmic choices. The tool de-
signer thus creates the initial version 
of the mental model embedded in the 
tool, a model that will change as the 
tool itself learns. As illustrated in our 
examples, there can be different de-

Figure 5. Shifting control in design processes. 

Human-Machine Design Systems

Traditional Design

Involvement of
Human Designer

Involvement of
Autonomous Tools

Pure Machine Design

New design practices. 

Design Practice Example Description

Framing Parameterization Designers have a deep understanding of the 
software tool and its parameters, as well as some 
understanding of the consequences of setting 
specific parameters; and 

They formulate hypotheses with regard to what sets 
of inputs will have the desired design consequences 
in lieu of carrying out the entire design process in an 
incremental, iterative, primarily manual fashion. 

Evaluation Process 
Analysis

Designers evaluate the overall design outcome, 
investigating sources of misalignment, as in 
assumptions embedded in the tool; and 

They formulate hypotheses about the process and 
test whether they hold. 

Adjustment Modifying 
Algorithms

Designers continuously align their mental models with 
mental models embedded in the autonomous tools; 

They consider how changes in the constraints and 
propensities of the tool may require changes in their 
mental models in terms of assumptions and goals; and

They consider how changes in assumptions and goals 
may require changes in the mental models embedded in 
the autonomous tools. 
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outputs in a way that leads to new hy-
potheses with regard to what sets of 
input parameters should be tested in 
the next batch of experiments. 

Adjustment. Evaluation by human 
designers can lead to the adjustment 
of parameter values (see Figure 2, loop 
1) or even to changes in the mental 
model embedded in the autonomous 
tool, resulting in changes in the algo-
rithms used; moreover, it might also 
change the mental models of human 
designers in terms of goals, cogni-
tive rules, and underlying reasoning. 
Changes of the mental model embed-
ded in the autonomous tool could 
change the tool’s constraints and pro-
pensities and require changes to the 
mental models of designers; likewise, 
changes in the mental models of de-
signers could require changes to the 
algorithms and thus the mental model 
embedded in the tool. Following each 
experiment, designers might thus 
have to continuously reconcile their 
mental models with the counterpart 
models embedded in the autonomous 
tool (see Figure 2, loop 3). 

In order to change the mental model 
embedded in an autonomous tool, de-
signers have to modify the underlying 
algorithm. The original mental model 
embedded in the tool—the one imple-
mented by the tool designer—can thus 
evolve over time. 

Competencies related to these de-
sign practices become critically im-
portant for achieving complex design 
outcomes. Having a detailed under-
standing of the designed artifact, as 
well as of the consequences of specific 
local decisions, becomes less impor-
tant. This explains why, in the context 
of, say, chip design, we see software 
engineers displacing electrical engi-
neers with a deep understanding of 
physical aspects of chip design. Be-
cause the design is increasingly medi-
ated by software that needs to be pa-
rameterized and evaluated, designers’ 
software skills become crucial; the 
table here outlines key implications 
in terms of emergent interrelated de-
signer activities. 

Some substitution of human de-
sign activity through autonomous 
tools is indeed occurring. To a cer-
tain degree, demand for specific, 
manual-type competencies in design 
professions, including software de-

velopment, is decreasing, while the 
demand for skills focused on how to 
work with software tools is increas-
ing. Organizations need to engage 
more effectively with new forms of 
autonomous tools supporting design 
processes. This is not simply a shift 
of tasks from humans to machines 
but a deeper shift in the relationship 
between humans and machines in 
the context of complex knowledge 
work. The shift puts humans in the 
role of coaches who guide tools to 
perform according to their expecta-
tions and requirements (see Figure 
2, loop 1) or in the role of laboratory 
scientists conducting experiments to 
understand and modify the behavior 
of complex knowledge artifacts (see 
Figure 2, loop 2 and loop 3). 

The Road Ahead 
Engaging with autonomous tools re-
quires reshaping the competencies 
designers need. Designers envision 
certain results and thus need to inter-
act with autonomous tools in ways that 
help them realize their design vision. 
At the same time, the use of autono-
mous tools opens unprecedented 
opportunities for creative problem 
solving. Consider the example of vid-
eo game production, where autono-
mous tools are increasingly able to 
procedurally generate artifacts of a 
scope and scale that was not possible 
in the past. Future designers will con-
stantly be challenged to rethink their 
mental models, including their gen-
eral approach to design. The continu-
ous reconciliation of mental models 
embedded in both designer cogni-
tion and their tools is an extension 
of traditional design processes that 
involve artful making where human 
actors gradually adjust their mental 
models to converge on solutions.5 

The proposed three-loop model 
contributes to the ongoing debate on 
how artificial intelligence will change 
knowledge work, challenging knowl-
edge workers to operate at a different 
level. Designers may become increas-
ingly removed from the actual artifact 
but still use tools to create artifacts of a 
complexity never imagined before. 
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